fix scanning error (#339)

This commit is contained in:
Atsushi Sakai
2020-06-08 21:43:37 +09:00
committed by GitHub
parent a36ddb4cff
commit fa1585d880
11 changed files with 476 additions and 381 deletions

View File

@@ -17,7 +17,7 @@ show_animation = True
class BidirectionalBreadthFirstSearchPlanner:
def __init__(self, ox, oy, reso, rr):
def __init__(self, ox, oy, resolution, rr):
"""
Initialize grid map for bfs planning
@@ -27,22 +27,25 @@ class BidirectionalBreadthFirstSearchPlanner:
rr: robot radius[m]
"""
self.reso = reso
self.min_x, self.min_y = None, None
self.max_x, self.max_y = None, None
self.x_width, self.y_width, self.obstacle_map = None, None, None
self.resolution = resolution
self.rr = rr
self.calc_obstacle_map(ox, oy)
self.motion = self.get_motion_model()
class Node:
def __init__(self, x, y, cost, pind, parent):
def __init__(self, x, y, cost, parent_index, parent):
self.x = x # index of grid
self.y = y # index of grid
self.cost = cost
self.pind = pind
self.parent_index = parent_index
self.parent = parent
def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(
self.cost) + "," + str(self.pind)
self.cost) + "," + str(self.parent_index)
def planning(self, sx, sy, gx, gy):
"""
@@ -59,15 +62,19 @@ class BidirectionalBreadthFirstSearchPlanner:
ry: y position list of the final path
"""
nstart = self.Node(self.calc_xyindex(sx, self.minx),
self.calc_xyindex(sy, self.miny), 0.0, -1, None)
ngoal = self.Node(self.calc_xyindex(gx, self.minx),
self.calc_xyindex(gy, self.miny), 0.0, -1, None)
start_node = self.Node(self.calc_xy_index(sx, self.min_x),
self.calc_xy_index(sy, self.min_y), 0.0, -1,
None)
goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
self.calc_xy_index(gy, self.min_y), 0.0, -1,
None)
open_set_A, closed_set_A = dict(), dict()
open_set_B, closed_set_B = dict(), dict()
open_set_B[self.calc_grid_index(ngoal)] = ngoal
open_set_A[self.calc_grid_index(nstart)] = nstart
open_set_B[self.calc_grid_index(goal_node)] = goal_node
open_set_A[self.calc_grid_index(start_node)] = start_node
meet_point_A, meet_point_B = None, None
while 1:
if len(open_set_A) == 0:
@@ -89,28 +96,29 @@ class BidirectionalBreadthFirstSearchPlanner:
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_grid_position(current_A.x, self.minx),
self.calc_grid_position(current_A.y, self.miny), "xc")
plt.plot(self.calc_grid_position(current_B.x, self.minx),
self.calc_grid_position(current_B.y, self.miny), "xc")
plt.plot(self.calc_grid_position(current_A.x, self.min_x),
self.calc_grid_position(current_A.y, self.min_y),
"xc")
plt.plot(self.calc_grid_position(current_B.x, self.min_x),
self.calc_grid_position(current_B.y, self.min_y),
"xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event:
[exit(0) if
event.key == 'escape' else None])
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if len(closed_set_A.keys()) % 10 == 0:
plt.pause(0.001)
if c_id_A in closed_set_B:
print("Find goal")
meetpointA = closed_set_A[c_id_A]
meetpointB = closed_set_B[c_id_A]
meet_point_A = closed_set_A[c_id_A]
meet_point_B = closed_set_B[c_id_A]
break
elif c_id_B in closed_set_A:
print("Find goal")
meetpointA = closed_set_A[c_id_B]
meetpointB = closed_set_B[c_id_B]
meet_point_A = closed_set_A[c_id_B]
meet_point_B = closed_set_B[c_id_B]
break
# expand_grid search grid based on motion model
@@ -137,20 +145,18 @@ class BidirectionalBreadthFirstSearchPlanner:
if not self.verify_node(node_B):
breakB = True
if (n_id_A not in closed_set_A) and (n_id_A not in
open_set_A) and (not
breakA):
if (n_id_A not in closed_set_A) and \
(n_id_A not in open_set_A) and (not breakA):
node_A.parent = current_A
open_set_A[n_id_A] = node_A
if (n_id_B not in closed_set_B) and (n_id_B not in
open_set_B) and (not
breakB):
if (n_id_B not in closed_set_B) and \
(n_id_B not in open_set_B) and (not breakB):
node_B.parent = current_B
open_set_B[n_id_B] = node_B
rx, ry = self.calc_final_path_bidir(
meetpointA, meetpointB, closed_set_A, closed_set_B)
meet_point_A, meet_point_B, closed_set_A, closed_set_B)
return rx, ry
# takes both set and meeting nodes and calculate optimal path
@@ -166,81 +172,81 @@ class BidirectionalBreadthFirstSearchPlanner:
return rx, ry
def calc_final_path(self, ngoal, closedset):
def calc_final_path(self, goal_node, closed_set):
# generate final course
rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
self.calc_grid_position(ngoal.y, self.miny)]
n = closedset[ngoal.parent_index]
rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [
self.calc_grid_position(goal_node.y, self.min_y)]
n = closed_set[goal_node.parent_index]
while n is not None:
rx.append(self.calc_grid_position(n.x, self.minx))
ry.append(self.calc_grid_position(n.y, self.miny))
rx.append(self.calc_grid_position(n.x, self.min_x))
ry.append(self.calc_grid_position(n.y, self.min_y))
n = n.parent
return rx, ry
def calc_grid_position(self, index, minp):
def calc_grid_position(self, index, min_position):
"""
calc grid position
:param index:
:param minp:
:param min_position:
:return:
"""
pos = index * self.reso + minp
pos = index * self.resolution + min_position
return pos
def calc_xyindex(self, position, min_pos):
return round((position - min_pos) / self.reso)
def calc_xy_index(self, position, min_pos):
return round((position - min_pos) / self.resolution)
def calc_grid_index(self, node):
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
def verify_node(self, node):
px = self.calc_grid_position(node.x, self.minx)
py = self.calc_grid_position(node.y, self.miny)
px = self.calc_grid_position(node.x, self.min_x)
py = self.calc_grid_position(node.y, self.min_y)
if px < self.minx:
if px < self.min_x:
return False
elif py < self.miny:
elif py < self.min_y:
return False
elif px >= self.maxx:
elif px >= self.max_x:
return False
elif py >= self.maxy:
elif py >= self.max_y:
return False
# collision check
if self.obmap[node.x][node.y]:
if self.obstacle_map[node.x][node.y]:
return False
return True
def calc_obstacle_map(self, ox, oy):
self.minx = round(min(ox))
self.miny = round(min(oy))
self.maxx = round(max(ox))
self.maxy = round(max(oy))
print("min_x:", self.minx)
print("min_y:", self.miny)
print("max_x:", self.maxx)
print("max_y:", self.maxy)
self.min_x = round(min(ox))
self.min_y = round(min(oy))
self.max_x = round(max(ox))
self.max_y = round(max(oy))
print("min_x:", self.min_x)
print("min_y:", self.min_y)
print("max_x:", self.max_x)
print("max_y:", self.max_y)
self.xwidth = round((self.maxx - self.minx) / self.reso)
self.ywidth = round((self.maxy - self.miny) / self.reso)
print("x_width:", self.xwidth)
print("y_width:", self.ywidth)
self.x_width = round((self.max_x - self.min_x) / self.resolution)
self.y_width = round((self.max_y - self.min_y) / self.resolution)
print("x_width:", self.x_width)
print("y_width:", self.y_width)
# obstacle map generation
self.obmap = [[False for _ in range(self.ywidth)]
for _ in range(self.xwidth)]
for ix in range(self.xwidth):
x = self.calc_grid_position(ix, self.minx)
for iy in range(self.ywidth):
y = self.calc_grid_position(iy, self.miny)
self.obstacle_map = [[False for _ in range(self.y_width)]
for _ in range(self.x_width)]
for ix in range(self.x_width):
x = self.calc_grid_position(ix, self.min_x)
for iy in range(self.y_width):
y = self.calc_grid_position(iy, self.min_y)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= self.rr:
self.obmap[ix][iy] = True
self.obstacle_map[ix][iy] = True
break
@staticmethod