From fb47653fa499df9aa81cd4cf8da358e1c087a010 Mon Sep 17 00:00:00 2001 From: Atsushi Sakai Date: Mon, 25 Dec 2017 11:36:50 -0800 Subject: [PATCH] add voronoi_road_map planner --- .../VoronoiRoadMap/voronoi_road_map.py | 305 ++++++++++++++++++ 1 file changed, 305 insertions(+) create mode 100644 PathPlanning/VoronoiRoadMap/voronoi_road_map.py diff --git a/PathPlanning/VoronoiRoadMap/voronoi_road_map.py b/PathPlanning/VoronoiRoadMap/voronoi_road_map.py new file mode 100644 index 00000000..88f69337 --- /dev/null +++ b/PathPlanning/VoronoiRoadMap/voronoi_road_map.py @@ -0,0 +1,305 @@ +""" + +Voronoi Road Map Planner + +author: Atsushi Sakai (@Atsushi_twi) + +""" + +import math +import numpy as np +import scipy.spatial +import matplotlib.pyplot as plt + +# parameter +N_KNN = 10 # number of edge from one sampled point +MAX_EDGE_LEN = 30.0 # [m] Maximum edge length + +show_animation = True + + +class Node: + """ + Node class for dijkstra search + """ + + def __init__(self, x, y, cost, pind): + self.x = x + self.y = y + self.cost = cost + self.pind = pind + + def __str__(self): + return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind) + + +class KDTree: + """ + Nearest neighbor search class with KDTree + """ + + def __init__(self, data): + # store kd-tree + self.tree = scipy.spatial.cKDTree(data) + + def search(self, inp, k=1): + u""" + Search NN + + inp: input data, single frame or multi frame + + """ + + if len(inp.shape) >= 2: # multi input + index = [] + dist = [] + + for i in inp.T: + idist, iindex = self.tree.query(i, k=k) + index.append(iindex) + dist.append(idist) + + return index, dist + else: + dist, index = self.tree.query(inp, k=k) + return index, dist + + def search_in_distance(self, inp, r): + u""" + find points with in a distance r + """ + + index = self.tree.query_ball_point(inp, r) + return index + + +def VRM_planning(sx, sy, gx, gy, ox, oy, rr): + + obkdtree = KDTree(np.vstack((ox, oy)).T) + + sample_x, sample_y = sample_points(sx, sy, gx, gy, rr, ox, oy, obkdtree) + if show_animation: + plt.plot(sample_x, sample_y, ".b") + + road_map = generate_roadmap(sample_x, sample_y, rr, obkdtree) + + rx, ry = dijkstra_planning( + sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y) + + return rx, ry + + +def is_collision(sx, sy, gx, gy, rr, okdtree): + x = sx + y = sy + dx = gx - sx + dy = gy - sy + yaw = math.atan2(gy - sy, gx - sx) + d = math.sqrt(dx**2 + dy**2) + + if d >= MAX_EDGE_LEN: + return True + + D = rr + nstep = round(d / D) + + for i in range(nstep): + idxs, dist = okdtree.search(np.matrix([x, y]).T) + if dist[0] <= rr: + return True # collision + x += D * math.cos(yaw) + y += D * math.sin(yaw) + + # goal point check + idxs, dist = okdtree.search(np.matrix([gx, gy]).T) + if dist[0] <= rr: + return True # collision + + return False # OK + + +def generate_roadmap(sample_x, sample_y, rr, obkdtree): + """ + Road map generation + + sample_x: [m] x positions of sampled points + sample_y: [m] y positions of sampled points + rr: Robot Radius[m] + obkdtree: KDTree object of obstacles + """ + + road_map = [] + nsample = len(sample_x) + skdtree = KDTree(np.vstack((sample_x, sample_y)).T) + + for (i, ix, iy) in zip(range(nsample), sample_x, sample_y): + + index, dists = skdtree.search( + np.matrix([ix, iy]).T, k=nsample) + inds = index[0][0] + edge_id = [] + # print(index) + + for ii in range(1, len(inds)): + nx = sample_x[inds[ii]] + ny = sample_y[inds[ii]] + + if not is_collision(ix, iy, nx, ny, rr, obkdtree): + edge_id.append(inds[ii]) + + if len(edge_id) >= N_KNN: + break + + road_map.append(edge_id) + + # plot_road_map(road_map, sample_x, sample_y) + + return road_map + + +def dijkstra_planning(sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y): + """ + gx: goal x position [m] + gx: goal x position [m] + ox: x position list of Obstacles [m] + oy: y position list of Obstacles [m] + reso: grid resolution [m] + rr: robot radius[m] + """ + + nstart = Node(sx, sy, 0.0, -1) + ngoal = Node(gx, gy, 0.0, -1) + + openset, closedset = dict(), dict() + openset[len(road_map) - 2] = nstart + + while True: + if len(openset) == 0: + print("Cannot find path") + break + + c_id = min(openset, key=lambda o: openset[o].cost) + current = openset[c_id] + + # show graph + if show_animation and len(closedset.keys()) % 2 == 0: + plt.plot(current.x, current.y, "xg") + plt.pause(0.001) + + if c_id == (len(road_map) - 1): + print("goal is found!") + ngoal.pind = current.pind + ngoal.cost = current.cost + break + + # Remove the item from the open set + del openset[c_id] + # Add it to the closed set + closedset[c_id] = current + + # expand search grid based on motion model + for i in range(len(road_map[c_id])): + n_id = road_map[c_id][i] + dx = sample_x[n_id] - current.x + dy = sample_y[n_id] - current.y + d = math.sqrt(dx**2 + dy**2) + node = Node(sample_x[n_id], sample_y[n_id], + current.cost + d, c_id) + + if n_id in closedset: + continue + # Otherwise if it is already in the open set + if n_id in openset: + if openset[n_id].cost > node.cost: + openset[n_id].cost = node.cost + openset[n_id].pind = c_id + else: + openset[n_id] = node + + # generate final course + rx, ry = [ngoal.x], [ngoal.y] + pind = ngoal.pind + while pind != -1: + n = closedset[pind] + rx.append(n.x) + ry.append(n.y) + pind = n.pind + + return rx, ry + + +def plot_road_map(road_map, sample_x, sample_y): + + for i in range(len(road_map)): + for ii in range(len(road_map[i])): + ind = road_map[i][ii] + + plt.plot([sample_x[i], sample_x[ind]], + [sample_y[i], sample_y[ind]], "-k") + + +def sample_points(sx, sy, gx, gy, rr, ox, oy, obkdtree): + oxy = np.vstack((ox, oy)).T + + vor = scipy.spatial.Voronoi(oxy) + sample_x = [ix for [ix, iy] in vor.vertices] + sample_y = [iy for [ix, iy] in vor.vertices] + + sample_x.append(sx) + sample_y.append(sy) + sample_x.append(gx) + sample_y.append(gy) + + return sample_x, sample_y + + +def main(): + print(__file__ + " start!!") + + # start and goal position + sx = 10.0 # [m] + sy = 10.0 # [m] + gx = 50.0 # [m] + gy = 50.0 # [m] + robot_size = 5.0 # [m] + + ox = [] + oy = [] + + for i in range(60): + ox.append(i) + oy.append(0.0) + for i in range(60): + ox.append(60.0) + oy.append(i) + for i in range(61): + ox.append(i) + oy.append(60.0) + for i in range(61): + ox.append(0.0) + oy.append(i) + for i in range(40): + ox.append(20.0) + oy.append(i) + for i in range(40): + ox.append(40.0) + oy.append(60.0 - i) + + if show_animation: + plt.plot(ox, oy, ".k") + plt.plot(sx, sy, "^r") + plt.plot(gx, gy, "^c") + plt.grid(True) + plt.axis("equal") + + rx, ry = VRM_planning(sx, sy, gx, gy, ox, oy, robot_size) + + assert len(rx) != 0, 'Cannot found path' + + if show_animation: + plt.plot(rx, ry, "-r") + plt.show() + + +if __name__ == '__main__': + main()