""" Safe interval path planner This script implements a safe-interval path planner for a 2d grid with dynamic obstacles. It is faster than SpaceTime A* because it reduces the number of redundant node expansions by pre-computing regions of adjacent time steps that are safe ("safe intervals") at each position. This allows the algorithm to skip expanding nodes that are in intervals that have already been visited earlier. Reference: https://www.cs.cmu.edu/~maxim/files/sipp_icra11.pdf """ import numpy as np import matplotlib.pyplot as plt from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import ( Grid, Interval, ObstacleArrangement, Position, empty_2d_array_of_lists, ) import heapq import random from dataclasses import dataclass from functools import total_ordering import time @dataclass() # Note: Total_ordering is used instead of adding `order=True` to the @dataclass decorator because # this class needs to override the __lt__ and __eq__ methods to ignore parent_index. The Parent # index and interval member variables are just used to track the path found by the algorithm, # and has no effect on the quality of a node. @total_ordering class Node: position: Position time: int heuristic: int parent_index: int interval: Interval """ This is what is used to drive node expansion. The node with the lowest value is expanded next. This comparison prioritizes the node with the lowest cost-to-come (self.time) + cost-to-go (self.heuristic) """ def __lt__(self, other: object): if not isinstance(other, Node): return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}") return (self.time + self.heuristic) < (other.time + other.heuristic) """ Equality only cares about position and time. Heuristic and interval will always be the same for a given (position, time) pairing, so they are not considered in equality. """ def __eq__(self, other: object): if not isinstance(other, Node): return NotImplemented return self.position == other.position and self.time == other.time @dataclass class EntryTimeAndInterval: entry_time: int interval: Interval class NodePath: path: list[Node] positions_at_time: dict[int, Position] = {} def __init__(self, path: list[Node]): self.path = path for (i, node) in enumerate(path): if i > 0: # account for waiting in interval at previous node prev_node = path[i-1] for t in range(prev_node.time, node.time): self.positions_at_time[t] = prev_node.position self.positions_at_time[node.time] = node.position """ Get the position of the path at a given time """ def get_position(self, time: int) -> Position | None: return self.positions_at_time.get(time) """ Time stamp of the last node in the path """ def goal_reached_time(self) -> int: return self.path[-1].time def __repr__(self): repr_string = "" for i, node in enumerate(self.path): repr_string += f"{i}: {node}\n" return repr_string class SafeIntervalPathPlanner: grid: Grid start: Position goal: Position def __init__(self, grid: Grid, start: Position, goal: Position): self.grid = grid self.start = start self.goal = goal # Seed randomness for reproducibility RANDOM_SEED = 50 random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) """ Generate a plan given the loaded problem statement. Raises an exception if it fails to find a path. Arguments: verbose (bool): set to True to print debug information """ def plan(self, verbose: bool = False) -> NodePath: safe_intervals = self.grid.get_safe_intervals() open_set: list[Node] = [] first_node_interval = safe_intervals[self.start.x, self.start.y][0] heapq.heappush( open_set, Node(self.start, 0, self.calculate_heuristic(self.start), -1, first_node_interval) ) expanded_list: list[Node] = [] visited_intervals = empty_2d_array_of_lists(self.grid.grid_size[0], self.grid.grid_size[1]) while open_set: expanded_node: Node = heapq.heappop(open_set) if verbose: print("Expanded node:", expanded_node) if expanded_node.time + 1 >= self.grid.time_limit: if verbose: print(f"\tSkipping node that is past time limit: {expanded_node}") continue if expanded_node.position == self.goal: print(f"Found path to goal after {len(expanded_list)} expansions") path = [] path_walker: Node = expanded_node while True: path.append(path_walker) if path_walker.parent_index == -1: break path_walker = expanded_list[path_walker.parent_index] # reverse path so it goes start -> goal path.reverse() return NodePath(path) expanded_idx = len(expanded_list) expanded_list.append(expanded_node) entry_time_and_node = EntryTimeAndInterval(expanded_node.time, expanded_node.interval) add_entry_to_visited_intervals_array(entry_time_and_node, visited_intervals, expanded_node) for child in self.generate_successors(expanded_node, expanded_idx, safe_intervals, visited_intervals): heapq.heappush(open_set, child) raise Exception("No path found") """ Generate list of possible successors of the provided `parent_node` that are worth expanding """ def generate_successors( self, parent_node: Node, parent_node_idx: int, intervals: np.ndarray, visited_intervals: np.ndarray ) -> list[Node]: new_nodes = [] diffs = [ Position(0, 0), Position(1, 0), Position(-1, 0), Position(0, 1), Position(0, -1), ] for diff in diffs: new_pos = parent_node.position + diff if not self.grid.inside_grid_bounds(new_pos): continue current_interval = parent_node.interval new_cell_intervals: list[Interval] = intervals[new_pos.x, new_pos.y] for interval in new_cell_intervals: # if interval starts after current ends, break # assumption: intervals are sorted by start time, so all future intervals will hit this condition as well if interval.start_time > current_interval.end_time: break # if interval ends before current starts, skip if interval.end_time < current_interval.start_time: continue # if we have already expanded a node in this interval with a <= starting time, skip better_node_expanded = False for visited in visited_intervals[new_pos.x, new_pos.y]: if interval == visited.interval and visited.entry_time <= parent_node.time + 1: better_node_expanded = True break if better_node_expanded: continue # We know there is a node worth expanding. Generate successor at the earliest possible time the # new interval can be entered for possible_t in range(max(parent_node.time + 1, interval.start_time), min(current_interval.end_time, interval.end_time)): if self.grid.valid_position(new_pos, possible_t): new_nodes.append(Node( new_pos, # entry is max of interval start and parent node time + 1 (get there as soon as possible) max(interval.start_time, parent_node.time + 1), self.calculate_heuristic(new_pos), parent_node_idx, interval, )) # break because all t's after this will make nodes with a higher cost, the same heuristic, and are in the same interval break return new_nodes """ Calculate the heuristic for a given position - Manhattan distance to the goal """ def calculate_heuristic(self, position) -> int: diff = self.goal - position return abs(diff.x) + abs(diff.y) """ Adds a new entry to the visited intervals array. If the entry is already present, the entry time is updated if the new entry time is better. Otherwise, the entry is added to `visited_intervals` at the position of `expanded_node`. """ def add_entry_to_visited_intervals_array(entry_time_and_interval: EntryTimeAndInterval, visited_intervals: np.ndarray, expanded_node: Node): # if entry is present, update entry time if better for existing_entry_and_interval in visited_intervals[expanded_node.position.x, expanded_node.position.y]: if existing_entry_and_interval.interval == entry_time_and_interval.interval: existing_entry_and_interval.entry_time = min(existing_entry_and_interval.entry_time, entry_time_and_interval.entry_time) # Otherwise, append visited_intervals[expanded_node.position.x, expanded_node.position.y].append(entry_time_and_interval) show_animation = True verbose = False def main(): start = Position(1, 18) goal = Position(19, 19) grid_side_length = 21 start_time = time.time() grid = Grid( np.array([grid_side_length, grid_side_length]), num_obstacles=250, obstacle_avoid_points=[start, goal], obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1, # obstacle_arrangement=ObstacleArrangement.RANDOM, ) planner = SafeIntervalPathPlanner(grid, start, goal) path = planner.plan(verbose) runtime = time.time() - start_time print(f"Planning took: {runtime:.5f} seconds") if verbose: print(f"Path: {path}") if not show_animation: return fig = plt.figure(figsize=(10, 7)) ax = fig.add_subplot( autoscale_on=False, xlim=(0, grid.grid_size[0] - 1), ylim=(0, grid.grid_size[1] - 1), ) ax.set_aspect("equal") ax.grid() ax.set_xticks(np.arange(0, grid_side_length, 1)) ax.set_yticks(np.arange(0, grid_side_length, 1)) (start_and_goal,) = ax.plot([], [], "mD", ms=15, label="Start and Goal") start_and_goal.set_data([start.x, goal.x], [start.y, goal.y]) (obs_points,) = ax.plot([], [], "ro", ms=15, label="Obstacles") (path_points,) = ax.plot([], [], "bo", ms=10, label="Path Found") ax.legend(bbox_to_anchor=(1.05, 1)) # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( "key_release_event", lambda event: [exit(0) if event.key == "escape" else None] ) for i in range(0, path.goal_reached_time() + 1): obs_positions = grid.get_obstacle_positions_at_time(i) obs_points.set_data(obs_positions[0], obs_positions[1]) path_position = path.get_position(i) path_points.set_data([path_position.x], [path_position.y]) plt.pause(0.2) plt.show() if __name__ == "__main__": main()