""" Path tracking simulation with Stanley steering control and PID speed control. author: Atsushi Sakai (@Atsushi_twi) Ref: - [Stanley: The robot that won the DARPA grand challenge](http://isl.ecst.csuchico.edu/DOCS/darpa2005/DARPA%202005%20Stanley.pdf) - [Autonomous Automobile Path Tracking](https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf) """ import numpy as np import matplotlib.pyplot as plt import sys import pathlib sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) from utils.angle import angle_mod from PathPlanning.CubicSpline import cubic_spline_planner k = 0.5 # control gain Kp = 1.0 # speed proportional gain dt = 0.1 # [s] time difference L = 2.9 # [m] Wheel base of vehicle max_steer = np.radians(30.0) # [rad] max steering angle show_animation = True class State: """ Class representing the state of a vehicle. :param x: (float) x-coordinate :param y: (float) y-coordinate :param yaw: (float) yaw angle :param v: (float) speed """ def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): """Instantiate the object.""" super().__init__() self.x = x self.y = y self.yaw = yaw self.v = v def update(self, acceleration, delta): """ Update the state of the vehicle. Stanley Control uses bicycle model. :param acceleration: (float) Acceleration :param delta: (float) Steering """ delta = np.clip(delta, -max_steer, max_steer) self.x += self.v * np.cos(self.yaw) * dt self.y += self.v * np.sin(self.yaw) * dt self.yaw += self.v / L * np.tan(delta) * dt self.yaw = normalize_angle(self.yaw) self.v += acceleration * dt def pid_control(target, current): """ Proportional control for the speed. :param target: (float) :param current: (float) :return: (float) """ return Kp * (target - current) def stanley_control(state, cx, cy, cyaw, last_target_idx): """ Stanley steering control. :param state: (State object) :param cx: ([float]) :param cy: ([float]) :param cyaw: ([float]) :param last_target_idx: (int) :return: (float, int) """ current_target_idx, error_front_axle = calc_target_index(state, cx, cy) if last_target_idx >= current_target_idx: current_target_idx = last_target_idx # theta_e corrects the heading error theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw) # theta_d corrects the cross track error theta_d = np.arctan2(k * error_front_axle, state.v) # Steering control delta = theta_e + theta_d return delta, current_target_idx def normalize_angle(angle): """ Normalize an angle to [-pi, pi]. :param angle: (float) :return: (float) Angle in radian in [-pi, pi] """ return angle_mod(angle) def calc_target_index(state, cx, cy): """ Compute index in the trajectory list of the target. :param state: (State object) :param cx: [float] :param cy: [float] :return: (int, float) """ # Calc front axle position fx = state.x + L * np.cos(state.yaw) fy = state.y + L * np.sin(state.yaw) # Search nearest point index dx = [fx - icx for icx in cx] dy = [fy - icy for icy in cy] d = np.hypot(dx, dy) target_idx = np.argmin(d) # Project RMS error onto front axle vector front_axle_vec = [-np.cos(state.yaw + np.pi / 2), -np.sin(state.yaw + np.pi / 2)] error_front_axle = np.dot([dx[target_idx], dy[target_idx]], front_axle_vec) return target_idx, error_front_axle def main(): """Plot an example of Stanley steering control on a cubic spline.""" # target course ax = [0.0, 100.0, 100.0, 50.0, 60.0] ay = [0.0, 0.0, -30.0, -20.0, 0.0] cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course( ax, ay, ds=0.1) target_speed = 30.0 / 3.6 # [m/s] max_simulation_time = 100.0 # Initial state state = State(x=-0.0, y=5.0, yaw=np.radians(20.0), v=0.0) last_idx = len(cx) - 1 time = 0.0 x = [state.x] y = [state.y] yaw = [state.yaw] v = [state.v] t = [0.0] target_idx, _ = calc_target_index(state, cx, cy) while max_simulation_time >= time and last_idx > target_idx: ai = pid_control(target_speed, state.v) di, target_idx = stanley_control(state, cx, cy, cyaw, target_idx) state.update(ai, di) time += dt x.append(state.x) y.append(state.y) yaw.append(state.yaw) v.append(state.v) t.append(time) if show_animation: # pragma: no cover plt.cla() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.plot(cx, cy, ".r", label="course") plt.plot(x, y, "-b", label="trajectory") plt.plot(cx[target_idx], cy[target_idx], "xg", label="target") plt.axis("equal") plt.grid(True) plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4]) plt.pause(0.001) # Test assert last_idx >= target_idx, "Cannot reach goal" if show_animation: # pragma: no cover plt.plot(cx, cy, ".r", label="course") plt.plot(x, y, "-b", label="trajectory") plt.legend() plt.xlabel("x[m]") plt.ylabel("y[m]") plt.axis("equal") plt.grid(True) plt.subplots(1) plt.plot(t, [iv * 3.6 for iv in v], "-r") plt.xlabel("Time[s]") plt.ylabel("Speed[km/h]") plt.grid(True) plt.show() if __name__ == '__main__': main()