""" Bidirectional A* grid planning author: Erwin Lejeune (@spida_rwin) See Wikipedia article (https://en.wikipedia.org/wiki/Bidirectional_search) """ import math import matplotlib.pyplot as plt show_animation = True class BidirectionalAStarPlanner: def __init__(self, ox, oy, resolution, rr): """ Initialize grid map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ self.min_x, self.min_y = None, None self.max_x, self.max_y = None, None self.x_width, self.y_width, self.obstacle_map = None, None, None self.resolution = resolution self.rr = rr self.calc_obstacle_map(ox, oy) self.motion = self.get_motion_model() class Node: def __init__(self, x, y, cost, parent_index): self.x = x # index of grid self.y = y # index of grid self.cost = cost self.parent_index = parent_index def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ Bidirectional A star path search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ start_node = self.Node(self.calc_xy_index(sx, self.min_x), self.calc_xy_index(sy, self.min_y), 0.0, -1) goal_node = self.Node(self.calc_xy_index(gx, self.min_x), self.calc_xy_index(gy, self.min_y), 0.0, -1) open_set_A, closed_set_A = dict(), dict() open_set_B, closed_set_B = dict(), dict() open_set_A[self.calc_grid_index(start_node)] = start_node open_set_B[self.calc_grid_index(goal_node)] = goal_node current_A = start_node current_B = goal_node meet_point_A, meet_point_B = None, None while True: if len(open_set_A) == 0: print("Open set A is empty..") break if len(open_set_B) == 0: print("Open set B is empty..") break c_id_A = min( open_set_A, key=lambda o: self.find_total_cost(open_set_A, o, current_B)) current_A = open_set_A[c_id_A] c_id_B = min( open_set_B, key=lambda o: self.find_total_cost(open_set_B, o, current_A)) current_B = open_set_B[c_id_B] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current_A.x, self.min_x), self.calc_grid_position(current_A.y, self.min_y), "xc") plt.plot(self.calc_grid_position(current_B.x, self.min_x), self.calc_grid_position(current_B.y, self.min_y), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closed_set_A.keys()) % 10 == 0: plt.pause(0.001) if current_A.x == current_B.x and current_A.y == current_B.y: print("Found goal") meet_point_A = current_A meet_point_B = current_B break # Remove the item from the open set del open_set_A[c_id_A] del open_set_B[c_id_B] # Add it to the closed set closed_set_A[c_id_A] = current_A closed_set_B[c_id_B] = current_B # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): c_nodes = [self.Node(current_A.x + self.motion[i][0], current_A.y + self.motion[i][1], current_A.cost + self.motion[i][2], c_id_A), self.Node(current_B.x + self.motion[i][0], current_B.y + self.motion[i][1], current_B.cost + self.motion[i][2], c_id_B)] n_ids = [self.calc_grid_index(c_nodes[0]), self.calc_grid_index(c_nodes[1])] # If the node is not safe, do nothing continue_ = self.check_nodes_and_sets(c_nodes, closed_set_A, closed_set_B, n_ids) if not continue_[0]: if n_ids[0] not in open_set_A: # discovered a new node open_set_A[n_ids[0]] = c_nodes[0] else: if open_set_A[n_ids[0]].cost > c_nodes[0].cost: # This path is the best until now. record it open_set_A[n_ids[0]] = c_nodes[0] if not continue_[1]: if n_ids[1] not in open_set_B: # discovered a new node open_set_B[n_ids[1]] = c_nodes[1] else: if open_set_B[n_ids[1]].cost > c_nodes[1].cost: # This path is the best until now. record it open_set_B[n_ids[1]] = c_nodes[1] rx, ry = self.calc_final_bidirectional_path( meet_point_A, meet_point_B, closed_set_A, closed_set_B) return rx, ry # takes two sets and two meeting nodes and return the optimal path def calc_final_bidirectional_path(self, n1, n2, setA, setB): rx_A, ry_A = self.calc_final_path(n1, setA) rx_B, ry_B = self.calc_final_path(n2, setB) rx_A.reverse() ry_A.reverse() rx = rx_A + rx_B ry = ry_A + ry_B return rx, ry def calc_final_path(self, goal_node, closed_set): # generate final course rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], \ [self.calc_grid_position(goal_node.y, self.min_y)] parent_index = goal_node.parent_index while parent_index != -1: n = closed_set[parent_index] rx.append(self.calc_grid_position(n.x, self.min_x)) ry.append(self.calc_grid_position(n.y, self.min_y)) parent_index = n.parent_index return rx, ry def check_nodes_and_sets(self, c_nodes, closedSet_A, closedSet_B, n_ids): continue_ = [False, False] if not self.verify_node(c_nodes[0]) or n_ids[0] in closedSet_A: continue_[0] = True if not self.verify_node(c_nodes[1]) or n_ids[1] in closedSet_B: continue_[1] = True return continue_ @staticmethod def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d def find_total_cost(self, open_set, lambda_, n1): g_cost = open_set[lambda_].cost h_cost = self.calc_heuristic(n1, open_set[lambda_]) f_cost = g_cost + h_cost return f_cost def calc_grid_position(self, index, min_position): """ calc grid position :param index: :param min_position: :return: """ pos = index * self.resolution + min_position return pos def calc_xy_index(self, position, min_pos): return round((position - min_pos) / self.resolution) def calc_grid_index(self, node): return (node.y - self.min_y) * self.x_width + (node.x - self.min_x) def verify_node(self, node): px = self.calc_grid_position(node.x, self.min_x) py = self.calc_grid_position(node.y, self.min_y) if px < self.min_x: return False elif py < self.min_y: return False elif px >= self.max_x: return False elif py >= self.max_y: return False # collision check if self.obstacle_map[node.x][node.y]: return False return True def calc_obstacle_map(self, ox, oy): self.min_x = round(min(ox)) self.min_y = round(min(oy)) self.max_x = round(max(ox)) self.max_y = round(max(oy)) print("min_x:", self.min_x) print("min_y:", self.min_y) print("max_x:", self.max_x) print("max_y:", self.max_y) self.x_width = round((self.max_x - self.min_x) / self.resolution) self.y_width = round((self.max_y - self.min_y) / self.resolution) print("x_width:", self.x_width) print("y_width:", self.y_width) # obstacle map generation self.obstacle_map = [[False for _ in range(self.y_width)] for _ in range(self.x_width)] for ix in range(self.x_width): x = self.calc_grid_position(ix, self.min_x) for iy in range(self.y_width): y = self.calc_grid_position(iy, self.min_y) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obstacle_map[ix][iy] = True break @staticmethod def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "ob") plt.grid(True) plt.axis("equal") bidir_a_star = BidirectionalAStarPlanner(ox, oy, grid_size, robot_radius) rx, ry = bidir_a_star.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(.0001) plt.show() if __name__ == '__main__': main()