""" Probabilistic Road Map (PRM) Planner author: Atsushi Sakai (@Atsushi_twi) """ import math import numpy as np import matplotlib.pyplot as plt from scipy.spatial import KDTree # parameter N_SAMPLE = 500 # number of sample_points N_KNN = 10 # number of edge from one sampled point MAX_EDGE_LEN = 30.0 # [m] Maximum edge length show_animation = True class Node: """ Node class for dijkstra search """ def __init__(self, x, y, cost, parent_index): self.x = x self.y = y self.cost = cost self.parent_index = parent_index def __str__(self): return str(self.x) + "," + str(self.y) + "," +\ str(self.cost) + "," + str(self.parent_index) def prm_planning(start_x, start_y, goal_x, goal_y, obstacle_x_list, obstacle_y_list, robot_radius, *, rng=None): """ Run probabilistic road map planning :param start_x: start x position :param start_y: start y position :param goal_x: goal x position :param goal_y: goal y position :param obstacle_x_list: obstacle x positions :param obstacle_y_list: obstacle y positions :param robot_radius: robot radius :param rng: (Optional) Random generator :return: """ obstacle_kd_tree = KDTree(np.vstack((obstacle_x_list, obstacle_y_list)).T) sample_x, sample_y = sample_points(start_x, start_y, goal_x, goal_y, robot_radius, obstacle_x_list, obstacle_y_list, obstacle_kd_tree, rng) if show_animation: plt.plot(sample_x, sample_y, ".b") road_map = generate_road_map(sample_x, sample_y, robot_radius, obstacle_kd_tree) rx, ry = dijkstra_planning( start_x, start_y, goal_x, goal_y, road_map, sample_x, sample_y) return rx, ry def is_collision(sx, sy, gx, gy, rr, obstacle_kd_tree): x = sx y = sy dx = gx - sx dy = gy - sy yaw = math.atan2(gy - sy, gx - sx) d = math.hypot(dx, dy) if d >= MAX_EDGE_LEN: return True D = rr n_step = round(d / D) for i in range(n_step): dist, _ = obstacle_kd_tree.query([x, y]) if dist <= rr: return True # collision x += D * math.cos(yaw) y += D * math.sin(yaw) # goal point check dist, _ = obstacle_kd_tree.query([gx, gy]) if dist <= rr: return True # collision return False # OK def generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree): """ Road map generation sample_x: [m] x positions of sampled points sample_y: [m] y positions of sampled points robot_radius: Robot Radius[m] obstacle_kd_tree: KDTree object of obstacles """ road_map = [] n_sample = len(sample_x) sample_kd_tree = KDTree(np.vstack((sample_x, sample_y)).T) for (i, ix, iy) in zip(range(n_sample), sample_x, sample_y): dists, indexes = sample_kd_tree.query([ix, iy], k=n_sample) edge_id = [] for ii in range(1, len(indexes)): nx = sample_x[indexes[ii]] ny = sample_y[indexes[ii]] if not is_collision(ix, iy, nx, ny, rr, obstacle_kd_tree): edge_id.append(indexes[ii]) if len(edge_id) >= N_KNN: break road_map.append(edge_id) # plot_road_map(road_map, sample_x, sample_y) return road_map def dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y): """ s_x: start x position [m] s_y: start y position [m] goal_x: goal x position [m] goal_y: goal y position [m] obstacle_x_list: x position list of Obstacles [m] obstacle_y_list: y position list of Obstacles [m] robot_radius: robot radius [m] road_map: ??? [m] sample_x: ??? [m] sample_y: ??? [m] @return: Two lists of path coordinates ([x1, x2, ...], [y1, y2, ...]), empty list when no path was found """ start_node = Node(sx, sy, 0.0, -1) goal_node = Node(gx, gy, 0.0, -1) open_set, closed_set = dict(), dict() open_set[len(road_map) - 2] = start_node path_found = True while True: if not open_set: print("Cannot find path") path_found = False break c_id = min(open_set, key=lambda o: open_set[o].cost) current = open_set[c_id] # show graph if show_animation and len(closed_set.keys()) % 2 == 0: # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.plot(current.x, current.y, "xg") plt.pause(0.001) if c_id == (len(road_map) - 1): print("goal is found!") goal_node.parent_index = current.parent_index goal_node.cost = current.cost break # Remove the item from the open set del open_set[c_id] # Add it to the closed set closed_set[c_id] = current # expand search grid based on motion model for i in range(len(road_map[c_id])): n_id = road_map[c_id][i] dx = sample_x[n_id] - current.x dy = sample_y[n_id] - current.y d = math.hypot(dx, dy) node = Node(sample_x[n_id], sample_y[n_id], current.cost + d, c_id) if n_id in closed_set: continue # Otherwise if it is already in the open set if n_id in open_set: if open_set[n_id].cost > node.cost: open_set[n_id].cost = node.cost open_set[n_id].parent_index = c_id else: open_set[n_id] = node if path_found is False: return [], [] # generate final course rx, ry = [goal_node.x], [goal_node.y] parent_index = goal_node.parent_index while parent_index != -1: n = closed_set[parent_index] rx.append(n.x) ry.append(n.y) parent_index = n.parent_index return rx, ry def plot_road_map(road_map, sample_x, sample_y): # pragma: no cover for i, _ in enumerate(road_map): for ii in range(len(road_map[i])): ind = road_map[i][ii] plt.plot([sample_x[i], sample_x[ind]], [sample_y[i], sample_y[ind]], "-k") def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree, rng): max_x = max(ox) max_y = max(oy) min_x = min(ox) min_y = min(oy) sample_x, sample_y = [], [] if rng is None: rng = np.random.default_rng() while len(sample_x) <= N_SAMPLE: tx = (rng.random() * (max_x - min_x)) + min_x ty = (rng.random() * (max_y - min_y)) + min_y dist, index = obstacle_kd_tree.query([tx, ty]) if dist >= rr: sample_x.append(tx) sample_y.append(ty) sample_x.append(sx) sample_y.append(sy) sample_x.append(gx) sample_y.append(gy) return sample_x, sample_y def main(rng=None): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] robot_size = 5.0 # [m] ox = [] oy = [] for i in range(60): ox.append(float(i)) oy.append(0.0) for i in range(60): ox.append(60.0) oy.append(float(i)) for i in range(61): ox.append(float(i)) oy.append(60.0) for i in range(61): ox.append(0.0) oy.append(float(i)) for i in range(40): ox.append(20.0) oy.append(float(i)) for i in range(40): ox.append(40.0) oy.append(60.0 - i) if show_animation: plt.plot(ox, oy, ".k") plt.plot(sx, sy, "^r") plt.plot(gx, gy, "^c") plt.grid(True) plt.axis("equal") rx, ry = prm_planning(sx, sy, gx, gy, ox, oy, robot_size, rng=rng) assert rx, 'Cannot found path' if show_animation: plt.plot(rx, ry, "-r") plt.pause(0.001) plt.show() if __name__ == '__main__': main()