""" Mobile robot motion planning sample with Dynamic Window Approach author: Atsushi Sakai (@Atsushi_twi) """ import math import numpy as np import matplotlib.pyplot as plt show_animation = True def dwa_control(x, u, config, goal, ob): """ Dynamic Window Approach control """ dw = calc_dynamic_window(x, config) u, traj = calc_final_input(x, u, dw, config, goal, ob) return u, traj class Config(): """ simulation parameter class """ def __init__(self): # robot parameter self.max_speed = 1.0 # [m/s] self.min_speed = -0.5 # [m/s] self.max_yawrate = 40.0 * math.pi / 180.0 # [rad/s] self.max_accel = 0.2 # [m/ss] self.max_dyawrate = 40.0 * math.pi / 180.0 # [rad/ss] self.v_reso = 0.01 # [m/s] self.yawrate_reso = 0.1 * math.pi / 180.0 # [rad/s] self.dt = 0.1 # [s] Time tick for motion prediction self.predict_time = 3.0 # [s] self.to_goal_cost_gain = 0.15 self.speed_cost_gain = 1.0 self.obstacle_cost_gain = 1.0 self.robot_radius = 1.0 # [m] for collision check def motion(x, u, dt): """ motion model """ x[2] += u[1] * dt x[0] += u[0] * math.cos(x[2]) * dt x[1] += u[0] * math.sin(x[2]) * dt x[3] = u[0] x[4] = u[1] return x def calc_dynamic_window(x, config): """ calculation dynamic window based on current state x """ # Dynamic window from robot specification Vs = [config.min_speed, config.max_speed, -config.max_yawrate, config.max_yawrate] # Dynamic window from motion model Vd = [x[3] - config.max_accel * config.dt, x[3] + config.max_accel * config.dt, x[4] - config.max_dyawrate * config.dt, x[4] + config.max_dyawrate * config.dt] # [vmin,vmax, yawrate min, yawrate max] dw = [max(Vs[0], Vd[0]), min(Vs[1], Vd[1]), max(Vs[2], Vd[2]), min(Vs[3], Vd[3])] return dw def predict_trajectory(x_init, v, y, config): """ predict trajectory with an input """ x = np.array(x_init) traj = np.array(x) time = 0 while time <= config.predict_time: x = motion(x, [v, y], config.dt) traj = np.vstack((traj, x)) time += config.dt return traj def calc_final_input(x, u, dw, config, goal, ob): """ calculation final input with dinamic window """ x_init = x[:] min_cost = float("inf") best_u = [0.0, 0.0] best_traj = np.array([x]) # evalucate all trajectory with sampled input in dynamic window for v in np.arange(dw[0], dw[1], config.v_reso): for y in np.arange(dw[2], dw[3], config.yawrate_reso): traj = predict_trajectory(x_init, v, y, config) # calc cost to_goal_cost = config.to_goal_cost_gain * calc_to_goal_cost(traj, goal, config) speed_cost = config.speed_cost_gain * \ (config.max_speed - traj[-1, 3]) ob_cost = config.obstacle_cost_gain*calc_obstacle_cost(traj, ob, config) final_cost = to_goal_cost + speed_cost + ob_cost # search minimum trajectory if min_cost >= final_cost: min_cost = final_cost best_u = [v, y] best_traj = traj return best_u, best_traj def calc_obstacle_cost(traj, ob, config): """ calc obstacle cost inf: collision """ skip_n = 2 # for speed up minr = float("inf") for ii in range(0, len(traj[:, 1]), skip_n): for i in range(len(ob[:, 0])): ox = ob[i, 0] oy = ob[i, 1] dx = traj[ii, 0] - ox dy = traj[ii, 1] - oy r = math.sqrt(dx**2 + dy**2) if r <= config.robot_radius: return float("Inf") # collision if minr >= r: minr = r return 1.0 / minr # OK def calc_to_goal_cost(traj, goal, config): """ calc to goal cost with angle difference """ dx = goal[0] - traj[-1, 0] dy = goal[1] - traj[-1, 1] error_angle = math.atan2(dy, dx) cost = abs(error_angle - traj[-1, 2]) return cost def plot_arrow(x, y, yaw, length=0.5, width=0.1): # pragma: no cover plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), head_length=width, head_width=width) plt.plot(x, y) def main(gx=10, gy=10): print(__file__ + " start!!") # initial state [x(m), y(m), yaw(rad), v(m/s), omega(rad/s)] x = np.array([0.0, 0.0, math.pi / 8.0, 0.0, 0.0]) # goal position [x(m), y(m)] goal = np.array([gx, gy]) # obstacles [x(m) y(m), ....] ob = np.array([[-1, -1], [0, 2], [4.0, 2.0], [5.0, 4.0], [5.0, 5.0], [5.0, 6.0], [5.0, 9.0], [8.0, 9.0], [7.0, 9.0], [12.0, 12.0] ]) # input [forward speed, yawrate] u = np.array([0.0, 0.0]) config = Config() traj = np.array(x) while True: u, ptraj = dwa_control(x, u, config, goal, ob) x = motion(x, u, config.dt) # simulate robot traj = np.vstack((traj, x)) # store state history if show_animation: plt.cla() plt.plot(ptraj[:, 0], ptraj[:, 1], "-g") plt.plot(x[0], x[1], "xr") plt.plot(goal[0], goal[1], "xb") plt.plot(ob[:, 0], ob[:, 1], "ok") plot_arrow(x[0], x[1], x[2]) plt.axis("equal") plt.grid(True) plt.pause(0.0001) # check reaching goal dist_to_goal = math.sqrt((x[0] - goal[0])**2 + (x[1] - goal[1])**2) if dist_to_goal <= config.robot_radius: print("Goal!!") break print("Done") if show_animation: plt.plot(traj[:, 0], traj[:, 1], "-r") plt.pause(0.0001) plt.show() if __name__ == '__main__': main()