""" FastSLAM 2.0 example author: Atsushi Sakai (@Atsushi_twi) """ import numpy as np import math import matplotlib.pyplot as plt # Fast SLAM covariance Q = np.diag([3.0, np.deg2rad(10.0)])**2 R = np.diag([1.0, np.deg2rad(20.0)])**2 # Simulation parameter Qsim = np.diag([0.3, np.deg2rad(2.0)])**2 Rsim = np.diag([0.5, np.deg2rad(10.0)])**2 OFFSET_YAWRATE_NOISE = 0.01 DT = 0.1 # time tick [s] SIM_TIME = 50.0 # simulation time [s] MAX_RANGE = 20.0 # maximum observation range M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association. STATE_SIZE = 3 # State size [x,y,yaw] LM_SIZE = 2 # LM srate size [x,y] N_PARTICLE = 100 # number of particle NTH = N_PARTICLE / 1.5 # Number of particle for re-sampling show_animation = True class Particle: def __init__(self, N_LM): self.w = 1.0 / N_PARTICLE self.x = 0.0 self.y = 0.0 self.yaw = 0.0 self.P = np.eye(3) # landmark x-y positions self.lm = np.zeros((N_LM, LM_SIZE)) # landmark position covariance self.lmP = np.zeros((N_LM * LM_SIZE, LM_SIZE)) def fast_slam2(particles, u, z): particles = predict_particles(particles, u) particles = update_with_observation(particles, z) particles = resampling(particles) return particles def normalize_weight(particles): sumw = sum([p.w for p in particles]) try: for i in range(N_PARTICLE): particles[i].w /= sumw except ZeroDivisionError: for i in range(N_PARTICLE): particles[i].w = 1.0 / N_PARTICLE return particles return particles def calc_final_state(particles): xEst = np.zeros((STATE_SIZE, 1)) particles = normalize_weight(particles) for i in range(N_PARTICLE): xEst[0, 0] += particles[i].w * particles[i].x xEst[1, 0] += particles[i].w * particles[i].y xEst[2, 0] += particles[i].w * particles[i].yaw xEst[2, 0] = pi_2_pi(xEst[2, 0]) # print(xEst) return xEst def predict_particles(particles, u): for i in range(N_PARTICLE): px = np.zeros((STATE_SIZE, 1)) px[0, 0] = particles[i].x px[1, 0] = particles[i].y px[2, 0] = particles[i].yaw ud = u + (np.random.randn(1, 2) @ R).T # add noise px = motion_model(px, ud) particles[i].x = px[0, 0] particles[i].y = px[1, 0] particles[i].yaw = px[2, 0] return particles def add_new_lm(particle, z, Q): r = z[0] b = z[1] lm_id = int(z[2]) s = math.sin(pi_2_pi(particle.yaw + b)) c = math.cos(pi_2_pi(particle.yaw + b)) particle.lm[lm_id, 0] = particle.x + r * c particle.lm[lm_id, 1] = particle.y + r * s # covariance Gz = np.array([[c, -r * s], [s, r * c]]) particle.lmP[2 * lm_id:2 * lm_id + 2] = Gz @ Q @ Gz.T return particle def compute_jacobians(particle, xf, Pf, Q): dx = xf[0, 0] - particle.x dy = xf[1, 0] - particle.y d2 = dx**2 + dy**2 d = math.sqrt(d2) zp = np.array( [d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]).reshape(2, 1) Hv = np.array([[-dx / d, -dy / d, 0.0], [dy / d2, -dx / d2, -1.0]]) Hf = np.array([[dx / d, dy / d], [-dy / d2, dx / d2]]) Sf = Hf @ Pf @ Hf.T + Q return zp, Hv, Hf, Sf def update_KF_with_cholesky(xf, Pf, v, Q, Hf): PHt = Pf @ Hf.T S = Hf @ PHt + Q S = (S + S.T) * 0.5 SChol = np.linalg.cholesky(S).T SCholInv = np.linalg.inv(SChol) W1 = PHt @ SCholInv W = W1 @ SCholInv.T x = xf + W @ v P = Pf - W1 @ W1.T return x, P def update_landmark(particle, z, Q): lm_id = int(z[2]) xf = np.array(particle.lm[lm_id, :]).reshape(2, 1) Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2]) zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q) dz = z[0:2].reshape(2, 1) - zp dz[1, 0] = pi_2_pi(dz[1, 0]) xf, Pf = update_KF_with_cholesky(xf, Pf, dz, Q, Hf) particle.lm[lm_id, :] = xf.T particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf return particle def compute_weight(particle, z, Q): lm_id = int(z[2]) xf = np.array(particle.lm[lm_id, :]).reshape(2, 1) Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2]) zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q) dz = z[0:2].reshape(2, 1) - zp dz[1, 0] = pi_2_pi(dz[1, 0]) try: invS = np.linalg.inv(Sf) except np.linalg.linalg.LinAlgError: return 1.0 num = math.exp(-0.5 * dz.T @ invS @ dz) den = 2.0 * math.pi * math.sqrt(np.linalg.det(Sf)) w = num / den return w def proposal_sampling(particle, z, Q): lm_id = int(z[2]) xf = particle.lm[lm_id, :].reshape(2, 1) Pf = particle.lmP[2 * lm_id:2 * lm_id + 2] # State x = np.array([particle.x, particle.y, particle.yaw]).reshape(3, 1) P = particle.P zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q) Sfi = np.linalg.inv(Sf) dz = z[0:2].reshape(2, 1) - zp dz[1] = pi_2_pi(dz[1]) Pi = np.linalg.inv(P) particle.P = np.linalg.inv(Hv.T @ Sfi @ Hv + Pi) # proposal covariance x += particle.P @ Hv.T @ Sfi @ dz # proposal mean particle.x = x[0, 0] particle.y = x[1, 0] particle.yaw = x[2, 0] return particle def update_with_observation(particles, z): for iz in range(len(z[0, :])): lmid = int(z[2, iz]) for ip in range(N_PARTICLE): # new landmark if abs(particles[ip].lm[lmid, 0]) <= 0.01: particles[ip] = add_new_lm(particles[ip], z[:, iz], Q) # known landmark else: w = compute_weight(particles[ip], z[:, iz], Q) particles[ip].w *= w particles[ip] = update_landmark(particles[ip], z[:, iz], Q) particles[ip] = proposal_sampling(particles[ip], z[:, iz], Q) return particles def resampling(particles): """ low variance re-sampling """ particles = normalize_weight(particles) pw = [] for i in range(N_PARTICLE): pw.append(particles[i].w) pw = np.array(pw) Neff = 1.0 / (pw @ pw.T) # Effective particle number # print(Neff) if Neff < NTH: # resampling wcum = np.cumsum(pw) base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE resampleid = base + np.random.rand(base.shape[0]) / N_PARTICLE inds = [] ind = 0 for ip in range(N_PARTICLE): while ((ind < wcum.shape[0] - 1) and (resampleid[ip] > wcum[ind])): ind += 1 inds.append(ind) tparticles = particles[:] for i in range(len(inds)): particles[i].x = tparticles[inds[i]].x particles[i].y = tparticles[inds[i]].y particles[i].yaw = tparticles[inds[i]].yaw particles[i].lm = tparticles[inds[i]].lm[:, :] particles[i].lmP = tparticles[inds[i]].lmP[:, :] particles[i].w = 1.0 / N_PARTICLE return particles def calc_input(time): if time <= 3.0: # wait at first v = 0.0 yawrate = 0.0 else: v = 1.0 # [m/s] yawrate = 0.1 # [rad/s] u = np.array([v, yawrate]).reshape(2, 1) return u def observation(xTrue, xd, u, RFID): # calc true state xTrue = motion_model(xTrue, u) # add noise to range observation z = np.zeros((3, 0)) for i in range(len(RFID[:, 0])): dx = RFID[i, 0] - xTrue[0, 0] dy = RFID[i, 1] - xTrue[1, 0] d = math.sqrt(dx**2 + dy**2) angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0]) if d <= MAX_RANGE: dn = d + np.random.randn() * Qsim[0, 0] # add noise anglen = angle + np.random.randn() * Qsim[1, 1] # add noise zi = np.array([dn, pi_2_pi(anglen), i]).reshape(3, 1) z = np.hstack((z, zi)) # add noise to input ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0] ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1] + OFFSET_YAWRATE_NOISE ud = np.array([ud1, ud2]).reshape(2, 1) xd = motion_model(xd, ud) return xTrue, z, xd, ud def motion_model(x, u): F = np.array([[1.0, 0, 0], [0, 1.0, 0], [0, 0, 1.0]]) B = np.array([[DT * math.cos(x[2, 0]), 0], [DT * math.sin(x[2, 0]), 0], [0.0, DT]]) x = F @ x + B @ u x[2, 0] = pi_2_pi(x[2, 0]) return x def pi_2_pi(angle): return (angle + math.pi) % (2 * math.pi) - math.pi def main(): print(__file__ + " start!!") time = 0.0 # RFID positions [x, y] RFID = np.array([[10.0, -2.0], [15.0, 10.0], [15.0, 15.0], [10.0, 20.0], [3.0, 15.0], [-5.0, 20.0], [-5.0, 5.0], [-10.0, 15.0] ]) N_LM = RFID.shape[0] # State Vector [x y yaw v]' xEst = np.zeros((STATE_SIZE, 1)) # SLAM estimation xTrue = np.zeros((STATE_SIZE, 1)) # True state xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning # history hxEst = xEst hxTrue = xTrue hxDR = xTrue particles = [Particle(N_LM) for i in range(N_PARTICLE)] while SIM_TIME >= time: time += DT u = calc_input(time) xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID) particles = fast_slam2(particles, ud, z) xEst = calc_final_state(particles) x_state = xEst[0: STATE_SIZE] # store data history hxEst = np.hstack((hxEst, x_state)) hxDR = np.hstack((hxDR, xDR)) hxTrue = np.hstack((hxTrue, xTrue)) if show_animation: # pragma: no cover plt.cla() plt.plot(RFID[:, 0], RFID[:, 1], "*k") for iz in range(len(z[:, 0])): lmid = int(z[2, iz]) plt.plot([xEst[0], RFID[lmid, 0]], [ xEst[1], RFID[lmid, 1]], "-k") for i in range(N_PARTICLE): plt.plot(particles[i].x, particles[i].y, ".r") plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb") plt.plot(hxTrue[0, :], hxTrue[1, :], "-b") plt.plot(hxDR[0, :], hxDR[1, :], "-k") plt.plot(hxEst[0, :], hxEst[1, :], "-r") plt.plot(xEst[0], xEst[1], "xk") plt.axis("equal") plt.grid(True) plt.pause(0.001) if __name__ == '__main__': main()