""" Informed RRT* path planning author: Karan Chawla Atsushi Sakai(@Atsushi_twi) Reference: Informed RRT*: Optimal Sampling-based Path planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic https://arxiv.org/pdf/1404.2334.pdf """ import copy import math import random import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation as Rot import numpy as np show_animation = True class InformedRRTStar: def __init__(self, start, goal, obstacleList, randArea, expandDis=0.5, goalSampleRate=10, maxIter=200): self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) self.min_rand = randArea[0] self.max_rand = randArea[1] self.expand_dis = expandDis self.goal_sample_rate = goalSampleRate self.max_iter = maxIter self.obstacle_list = obstacleList self.node_list = None def informed_rrt_star_search(self, animation=True): self.node_list = [self.start] # max length we expect to find in our 'informed' sample space, # starts as infinite cBest = float('inf') solutionSet = set() path = None # Computing the sampling space cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) + pow(self.start.y - self.goal.y, 2)) xCenter = np.array([[(self.start.x + self.goal.x) / 2.0], [(self.start.y + self.goal.y) / 2.0], [0]]) a1 = np.array([[(self.goal.x - self.start.x) / cMin], [(self.goal.y - self.start.y) / cMin], [0]]) e_theta = math.atan2(a1[1], a1[0]) # first column of identity matrix transposed id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3) M = a1 @ id1_t U, S, Vh = np.linalg.svd(M, True, True) C = np.dot(np.dot(U, np.diag( [1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh) for i in range(self.max_iter): # Sample space is defined by cBest # cMin is the minimum distance between the start point and the goal # xCenter is the midpoint between the start and the goal # cBest changes when a new path is found rnd = self.informed_sample(cBest, cMin, xCenter, C) n_ind = self.get_nearest_list_index(self.node_list, rnd) nearestNode = self.node_list[n_ind] # steer theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.get_new_node(theta, n_ind, nearestNode) d = self.line_cost(nearestNode, newNode) noCollision = self.check_collision(nearestNode, theta, d) if noCollision: nearInds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearInds) self.node_list.append(newNode) self.rewire(newNode, nearInds) if self.is_near_goal(newNode): if self.check_segment_collision(newNode.x, newNode.y, self.goal.x, self.goal.y): solutionSet.add(newNode) lastIndex = len(self.node_list) - 1 tempPath = self.get_final_course(lastIndex) tempPathLen = self.get_path_len(tempPath) if tempPathLen < cBest: path = tempPath cBest = tempPathLen if animation: self.draw_graph(xCenter=xCenter, cBest=cBest, cMin=cMin, e_theta=e_theta, rnd=rnd) return path def choose_parent(self, newNode, nearInds): if len(nearInds) == 0: return newNode dList = [] for i in nearInds: dx = newNode.x - self.node_list[i].x dy = newNode.y - self.node_list[i].y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) if self.check_collision(self.node_list[i], theta, d): dList.append(self.node_list[i].cost + d) else: dList.append(float('inf')) minCost = min(dList) minInd = nearInds[dList.index(minCost)] if minCost == float('inf'): print("min cost is inf") return newNode newNode.cost = minCost newNode.parent = minInd return newNode def find_near_nodes(self, newNode): n_node = len(self.node_list) r = 50.0 * math.sqrt((math.log(n_node) / n_node)) d_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 for node in self.node_list] near_inds = [d_list.index(i) for i in d_list if i <= r ** 2] return near_inds def informed_sample(self, cMax, cMin, xCenter, C): if cMax < float('inf'): r = [cMax / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] L = np.diag(r) xBall = self.sample_unit_ball() rnd = np.dot(np.dot(C, L), xBall) + xCenter rnd = [rnd[(0, 0)], rnd[(1, 0)]] else: rnd = self.sample_free_space() return rnd @staticmethod def sample_unit_ball(): a = random.random() b = random.random() if b < a: a, b = b, a sample = (b * math.cos(2 * math.pi * a / b), b * math.sin(2 * math.pi * a / b)) return np.array([[sample[0]], [sample[1]], [0]]) def sample_free_space(self): if random.randint(0, 100) > self.goal_sample_rate: rnd = [random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)] else: rnd = [self.goal.x, self.goal.y] return rnd @staticmethod def get_path_len(path): pathLen = 0 for i in range(1, len(path)): node1_x = path[i][0] node1_y = path[i][1] node2_x = path[i - 1][0] node2_y = path[i - 1][1] pathLen += math.sqrt((node1_x - node2_x) ** 2 + (node1_y - node2_y) ** 2) return pathLen @staticmethod def line_cost(node1, node2): return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2) @staticmethod def get_nearest_list_index(nodes, rnd): dList = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in nodes] minIndex = dList.index(min(dList)) return minIndex def get_new_node(self, theta, n_ind, nearestNode): newNode = copy.deepcopy(nearestNode) newNode.x += self.expand_dis * math.cos(theta) newNode.y += self.expand_dis * math.sin(theta) newNode.cost += self.expand_dis newNode.parent = n_ind return newNode def is_near_goal(self, node): d = self.line_cost(node, self.goal) if d < self.expand_dis: return True return False def rewire(self, newNode, nearInds): n_node = len(self.node_list) for i in nearInds: nearNode = self.node_list[i] d = math.sqrt((nearNode.x - newNode.x) ** 2 + (nearNode.y - newNode.y) ** 2) s_cost = newNode.cost + d if nearNode.cost > s_cost: theta = math.atan2(newNode.y - nearNode.y, newNode.x - nearNode.x) if self.check_collision(nearNode, theta, d): nearNode.parent = n_node - 1 nearNode.cost = s_cost @staticmethod def distance_squared_point_to_segment(v, w, p): # Return minimum distance between line segment vw and point p if np.array_equal(v, w): return (p - v).dot(p - v) # v == w case l2 = (w - v).dot(w - v) # i.e. |w-v|^2 - avoid a sqrt # Consider the line extending the segment, # parameterized as v + t (w - v). # We find projection of point p onto the line. # It falls where t = [(p-v) . (w-v)] / |w-v|^2 # We clamp t from [0,1] to handle points outside the segment vw. t = max(0, min(1, (p - v).dot(w - v) / l2)) projection = v + t * (w - v) # Projection falls on the segment return (p - projection).dot(p - projection) def check_segment_collision(self, x1, y1, x2, y2): for (ox, oy, size) in self.obstacle_list: dd = self.distance_squared_point_to_segment( np.array([x1, y1]), np.array([x2, y2]), np.array([ox, oy])) if dd <= size ** 2: return False # collision return True def check_collision(self, nearNode, theta, d): tmpNode = copy.deepcopy(nearNode) end_x = tmpNode.x + math.cos(theta) * d end_y = tmpNode.y + math.sin(theta) * d return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y) def get_final_course(self, lastIndex): path = [[self.goal.x, self.goal.y]] while self.node_list[lastIndex].parent is not None: node = self.node_list[lastIndex] path.append([node.x, node.y]) lastIndex = node.parent path.append([self.start.x, self.start.y]) return path def draw_graph(self, xCenter=None, cBest=None, cMin=None, e_theta=None, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") if cBest != float('inf'): self.plot_ellipse(xCenter, cBest, cMin, e_theta) for node in self.node_list: if node.parent is not None: if node.x or node.y is not None: plt.plot([node.x, self.node_list[node.parent].x], [ node.y, self.node_list[node.parent].y], "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.goal.x, self.goal.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01) @staticmethod def plot_ellipse(xCenter, cBest, cMin, e_theta): # pragma: no cover a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0 b = cBest / 2.0 angle = math.pi / 2.0 - e_theta cx = xCenter[0] cy = xCenter[1] t = np.arange(0, 2 * math.pi + 0.1, 0.1) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] rot = Rot.from_euler('z', -angle).as_matrix()[0:2, 0:2] fx = rot @ np.array([x, y]) px = np.array(fx[0, :] + cx).flatten() py = np.array(fx[1, :] + cy).flatten() plt.plot(cx, cy, "xc") plt.plot(px, py, "--c") class Node: def __init__(self, x, y): self.x = x self.y = y self.cost = 0.0 self.parent = None def main(): print("Start informed rrt star planning") # create obstacles obstacleList = [ (5, 5, 0.5), (9, 6, 1), (7, 5, 1), (1, 5, 1), (3, 6, 1), (7, 9, 1) ] # Set params rrt = InformedRRTStar(start=[0, 0], goal=[5, 10], randArea=[-2, 15], obstacleList=obstacleList) path = rrt.informed_rrt_star_search(animation=show_animation) print("Done!!") # Plot path if show_animation: rrt.draw_graph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) plt.show() if __name__ == '__main__': main()