""" Quintic Polynomials Planner author: Atsushi Sakai (@Atsushi_twi) Ref: - [Local Path planning And Motion Control For Agv In Positioning](http://ieeexplore.ieee.org/document/637936/) """ import math import matplotlib.pyplot as plt import numpy as np # parameter MAX_T = 100.0 # maximum time to the goal [s] MIN_T = 5.0 # minimum time to the goal[s] show_animation = True class QuinticPolynomial: def __init__(self, xs, vxs, axs, xe, vxe, axe, time): # calc coefficient of quintic polynomial # See jupyter notebook document for derivation of this equation. self.a0 = xs self.a1 = vxs self.a2 = axs / 2.0 A = np.array([[time ** 3, time ** 4, time ** 5], [3 * time ** 2, 4 * time ** 3, 5 * time ** 4], [6 * time, 12 * time ** 2, 20 * time ** 3]]) b = np.array([xe - self.a0 - self.a1 * time - self.a2 * time ** 2, vxe - self.a1 - 2 * self.a2 * time, axe - 2 * self.a2]) x = np.linalg.solve(A, b) self.a3 = x[0] self.a4 = x[1] self.a5 = x[2] def calc_point(self, t): xt = self.a0 + self.a1 * t + self.a2 * t ** 2 + \ self.a3 * t ** 3 + self.a4 * t ** 4 + self.a5 * t ** 5 return xt def calc_first_derivative(self, t): xt = self.a1 + 2 * self.a2 * t + \ 3 * self.a3 * t ** 2 + 4 * self.a4 * t ** 3 + 5 * self.a5 * t ** 4 return xt def calc_second_derivative(self, t): xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t ** 2 + 20 * self.a5 * t ** 3 return xt def calc_third_derivative(self, t): xt = 6 * self.a3 + 24 * self.a4 * t + 60 * self.a5 * t ** 2 return xt def quintic_polynomials_planner(sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt): """ quintic polynomial planner input s_x: start x position [m] s_y: start y position [m] s_yaw: start yaw angle [rad] sa: start accel [m/ss] gx: goal x position [m] gy: goal y position [m] gyaw: goal yaw angle [rad] ga: goal accel [m/ss] max_accel: maximum accel [m/ss] max_jerk: maximum jerk [m/sss] dt: time tick [s] return time: time result rx: x position result list ry: y position result list ryaw: yaw angle result list rv: velocity result list ra: accel result list """ vxs = sv * math.cos(syaw) vys = sv * math.sin(syaw) vxg = gv * math.cos(gyaw) vyg = gv * math.sin(gyaw) axs = sa * math.cos(syaw) ays = sa * math.sin(syaw) axg = ga * math.cos(gyaw) ayg = ga * math.sin(gyaw) time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], [] for T in np.arange(MIN_T, MAX_T, MIN_T): xqp = QuinticPolynomial(sx, vxs, axs, gx, vxg, axg, T) yqp = QuinticPolynomial(sy, vys, ays, gy, vyg, ayg, T) time, rx, ry, ryaw, rv, ra, rj = [], [], [], [], [], [], [] for t in np.arange(0.0, T + dt, dt): time.append(t) rx.append(xqp.calc_point(t)) ry.append(yqp.calc_point(t)) vx = xqp.calc_first_derivative(t) vy = yqp.calc_first_derivative(t) v = np.hypot(vx, vy) yaw = math.atan2(vy, vx) rv.append(v) ryaw.append(yaw) ax = xqp.calc_second_derivative(t) ay = yqp.calc_second_derivative(t) a = np.hypot(ax, ay) if len(rv) >= 2 and rv[-1] - rv[-2] < 0.0: a *= -1 ra.append(a) jx = xqp.calc_third_derivative(t) jy = yqp.calc_third_derivative(t) j = np.hypot(jx, jy) if len(ra) >= 2 and ra[-1] - ra[-2] < 0.0: j *= -1 rj.append(j) if max([abs(i) for i in ra]) <= max_accel and max([abs(i) for i in rj]) <= max_jerk: print("find path!!") break if show_animation: # pragma: no cover for i, _ in enumerate(time): plt.cla() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.grid(True) plt.axis("equal") plot_arrow(sx, sy, syaw) plot_arrow(gx, gy, gyaw) plot_arrow(rx[i], ry[i], ryaw[i]) plt.title("Time[s]:" + str(time[i])[0:4] + " v[m/s]:" + str(rv[i])[0:4] + " a[m/ss]:" + str(ra[i])[0:4] + " jerk[m/sss]:" + str(rj[i])[0:4], ) plt.pause(0.001) return time, rx, ry, ryaw, rv, ra, rj def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover """ Plot arrow """ if not isinstance(x, float): for (ix, iy, iyaw) in zip(x, y, yaw): plot_arrow(ix, iy, iyaw) else: plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc, ec=ec, head_width=width, head_length=width) plt.plot(x, y) def main(): print(__file__ + " start!!") sx = 10.0 # start x position [m] sy = 10.0 # start y position [m] syaw = np.deg2rad(10.0) # start yaw angle [rad] sv = 1.0 # start speed [m/s] sa = 0.1 # start accel [m/ss] gx = 30.0 # goal x position [m] gy = -10.0 # goal y position [m] gyaw = np.deg2rad(20.0) # goal yaw angle [rad] gv = 1.0 # goal speed [m/s] ga = 0.1 # goal accel [m/ss] max_accel = 1.0 # max accel [m/ss] max_jerk = 0.5 # max jerk [m/sss] dt = 0.1 # time tick [s] time, x, y, yaw, v, a, j = quintic_polynomials_planner( sx, sy, syaw, sv, sa, gx, gy, gyaw, gv, ga, max_accel, max_jerk, dt) if show_animation: # pragma: no cover plt.plot(x, y, "-r") plt.subplots() plt.plot(time, [np.rad2deg(i) for i in yaw], "-r") plt.xlabel("Time[s]") plt.ylabel("Yaw[deg]") plt.grid(True) plt.subplots() plt.plot(time, v, "-r") plt.xlabel("Time[s]") plt.ylabel("Speed[m/s]") plt.grid(True) plt.subplots() plt.plot(time, a, "-r") plt.xlabel("Time[s]") plt.ylabel("accel[m/ss]") plt.grid(True) plt.subplots() plt.plot(time, j, "-r") plt.xlabel("Time[s]") plt.ylabel("jerk[m/sss]") plt.grid(True) plt.show() if __name__ == '__main__': main()