#! /usr/bin/python # -*- coding: utf-8 -*- u""" Path tracking simulation with pure pursuit steering control and PID speed control. author: Atsushi Sakai """ import numpy as np import math import matplotlib.pyplot as plt import unicycle_model Kp = 1.0 # speed propotional gain Lf = 3.0 # look-ahead distance def PIDControl(target, current): a = Kp * (target - current) return a def pure_pursuit_control(state, cx, cy, pind): if state.v >= 0: ind = calc_nearest_index(state, cx[pind:], cy[pind:]) else: ind = calc_nearest_index(state, cx[:pind + 1], cy[:pind + 1]) if state.v >= 0: ind = ind + pind tx = cx[ind] ty = cy[ind] alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw if state.v < 0: # back if alpha > 0: alpha = math.pi - alpha else: alpha = math.pi + alpha delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0) if state.v < 0: # back delta = delta * -1.0 return delta, ind def calc_nearest_index(state, cx, cy): dx = [state.x - icx for icx in cx] dy = [state.y - icy for icy in cy] d = [abs(math.sqrt(idx ** 2 + idy ** 2) - Lf) for (idx, idy) in zip(dx, dy)] ind = d.index(min(d)) return ind def main(): # target course cx = np.arange(0, 50, 0.1) cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx] target_speed = 30.0 / 3.6 T = 15.0 # max simulation time state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=0.0) # state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6) # state = unicycle_model.State(x=10.0, y=5.0, yaw=0.0, v=-30.0 / 3.6) # state = unicycle_model.State( # x=3.0, y=5.0, yaw=math.radians(-40.0), v=-10.0 / 3.6) # state = unicycle_model.State( # x=3.0, y=5.0, yaw=math.radians(40.0), v=50.0 / 3.6) lastIndex = len(cx) - 1 time = 0.0 x = [state.x] y = [state.y] yaw = [state.yaw] v = [state.v] t = [0.0] target_ind = calc_nearest_index(state, cx, cy) while T >= time and lastIndex > target_ind: ai = PIDControl(target_speed, state.v) di, target_ind = pure_pursuit_control(state, cx, cy, target_ind) state = unicycle_model.update(state, ai, di) time = time + unicycle_model.dt x.append(state.x) y.append(state.y) yaw.append(state.yaw) v.append(state.v) t.append(time) # plt.cla() # plt.plot(cx, cy, ".r", label="course") # plt.plot(x, y, "-b", label="trajectory") # plt.plot(cx[target_ind], cy[target_ind], "xg", label="target") # plt.axis("equal") # plt.grid(True) # plt.pause(0.1) # input() flg, ax = plt.subplots(1) plt.plot(cx, cy, ".r", label="course") plt.plot(x, y, "-b", label="trajectory") plt.legend() plt.xlabel("x[m]") plt.ylabel("y[m]") plt.axis("equal") plt.grid(True) flg, ax = plt.subplots(1) plt.plot(t, [iv * 3.6 for iv in v], "-r") plt.xlabel("Time[s]") plt.ylabel("Speed[km/h]") plt.grid(True) plt.show() if __name__ == '__main__': print("Pure pursuit path tracking simulation start") main()