#!/usr/bin/python # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import random import math delta = 0.1 minXY=-5.0 maxXY=5.0 nContour=50 alpha=0.001 def Jacob(state): u""" jacobi matrix of Himmelblau's function """ x=state[0,0] y=state[0,1] dx=4*x**3+4*x*y-44*x+2*x+2*y**2-14 dy=2*x**2+4*x*y+4*y**3-26*y-22 J=np.matrix([dx,dy]).T return J def HimmelblauFunction(x,y): u""" Himmelblau's function see Himmelblau's function - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Himmelblau%27s_function """ return (x**2+y-11)**2+(x+y**2-7)**2 def CreateMeshData(): x = np.arange(minXY, maxXY, delta) y = np.arange(minXY, maxXY, delta) X, Y = np.meshgrid(x, y) Z=[HimmelblauFunction(x,y) for (x,y) in zip(X,Y)] return(X,Y,Z) def QuasiNewtonMethod(start,Jacob): u""" Quasi Newton Method Optimization """ result=start x=start H= np.identity(2) preJ=None preG=None while 1: J=Jacob(x) sumJ=abs(np.sum(J)) if sumJ<=0.01: print("OK") break grad=-np.linalg.inv(H)*J x+=alpha*grad.T result=np.vstack((result,np.array(x))) if preJ is not None: y=J-preJ H=H+(y*y.T)/(y.T*preG)-(H*preG*preG.T*H)/(preG.T*H*preG) preJ=J preG=(alpha*grad.T).T return result # Main start=np.matrix([random.uniform(minXY,maxXY),random.uniform(minXY,maxXY)]) result=QuasiNewtonMethod(start,Jacob) (X,Y,Z)=CreateMeshData() CS = plt.contour(X, Y, Z,nContour) plt.plot(start[0,0],start[0,1],"xr"); optX=result[:,0] optY=result[:,1] plt.plot(optX,optY,"-r"); plt.show()