import numpy as np import math from matplotlib import pyplot as plt import matplotlib.patches as pat class BipedalPlanner(object): def __init__(self): self.footsteps = None self.g = 9.8 def set_ref_footsteps(self, footsteps): self.ref_footsteps = footsteps def inverted_pendulum(self, x, x_dot, px_star, y, y_dot, py_star, z_c, time_width): time_split = 100 for i in range(time_split): delta_time = time_width / time_split x_dot2 = self.g / z_c * (x - px_star) x += x_dot * delta_time x_dot += x_dot2 * delta_time y_dot2 = self.g / z_c * (y - py_star) y += y_dot * delta_time y_dot += y_dot2 * delta_time self.com_trajectory.append([x, y]) return x, x_dot, y, y_dot def walk(self, T_sup=0.8, z_c=0.8, a=10, b=1, plot=False): if self.ref_footsteps == None: print("No footsteps") return self.com_trajectory = [] self.footsteps = [] self.ref_p = [] self.act_p = [] px, py = 0., 0. px_star, py_star = px, py xi, xi_dot, yi, yi_dot = 0., 0., 0., 0. time = 0. n = 0 self.ref_p.append([px, py, 0]) for i in range(len(self.ref_footsteps)): # simulate x, y o finverted pendulum xi, xi_dot, yi, yi_dot = self.inverted_pendulum(xi, xi_dot, px_star, yi, yi_dot, py_star, z_c, T_sup) # update time time += T_sup n += 1 # calculate px, py, x_, y_, vx_, vy_ f_x, f_y, f_theta = self.ref_footsteps[n - 1] rotate_mat = np.array([[math.cos(f_theta), -math.sin(f_theta)], [math.sin(f_theta), math.cos(f_theta)]]) if n == len(self.ref_footsteps): f_x_next, f_y_next, f_theta_next = 0., 0., 0. else: f_x_next, f_y_next, f_theta_next = self.ref_footsteps[n] rotate_mat_next = np.array([[math.cos(f_theta_next), -math.sin(f_theta_next)], [math.sin(f_theta_next), math.cos(f_theta_next)]]) T_c = math.sqrt(z_c / self.g) C = math.cosh(T_sup / T_c) S = math.sinh(T_sup / T_c) px, py = list(np.array([px, py]) + np.dot(rotate_mat, np.array([f_x, -1 * math.pow(-1, n) * f_y]))) x_, y_ = list(np.dot(rotate_mat_next, np.array([f_x_next / 2., math.pow(-1, n) * f_y_next / 2.]))) vx_, vy_ = list(np.dot(rotate_mat_next, np.array([(1 + C) / (T_c * S) * x_, (C - 1) / (T_c * S) * y_]))) self.ref_p.append([px, py, f_theta]) # calculate reference COM xd, xd_dot = px + x_, vx_ yd, yd_dot = py + y_, vy_ # calculate modified footsteps D = a * math.pow(C - 1, 2) + b * math.pow(S / T_c, 2) px_star = -a * (C - 1) / D * (xd - C * xi - T_c * S * xi_dot) - b * S / (T_c * D) * (xd_dot - S / T_c * xi - C * xi_dot) py_star = -a * (C - 1) / D * (yd - C * yi - T_c * S * yi_dot) - b * S / (T_c * D) * (yd_dot - S / T_c * yi - C * yi_dot) self.act_p.append([px_star, py_star, f_theta]) self.footsteps.append([px_star, py_star]) if plot: fig = plt.figure() ax = fig.subplots() ax.set_xlim(0, 1) ax.set_ylim(-0.1, 0.2 + 0.1) ax.set_aspect('equal', 'datalim') ax.plot([i[0] for i in self.footsteps], [i[1] for i in self.footsteps]) ax.plot([i[0] for i in self.com_trajectory], [i[1] for i in self.com_trajectory]) for i in range(len(self.ref_p)): rec = pat.Rectangle(xy = (self.ref_p[i][0], self.ref_p[i][1]), width=0.06, height=0.04, angle=self.ref_p[i][2] * 180 / math.pi, color="green", fill=False, ls=":") ax.add_patch(rec) for i in range(len(self.act_p)): rec = pat.Rectangle(xy = (self.act_p[i][0], self.act_p[i][1]), width=0.06, height=0.04, angle=self.act_p[i][2] * 180 / math.pi, color="blue", fill=False) ax.add_patch(rec) plt.show() if __name__ == "__main__": bipedal_planner = BipedalPlanner() footsteps = [[0.0, 0.2, 0.0], [0.3, 0.2, 0.0], [0.3, 0.2, 0.2], [0.3, 0.2, 0.2], [0.0, 0.2, 0.2]] bipedal_planner.set_ref_footsteps(footsteps) bipedal_planner.walk(plot=True)