""" Path tracking simulation with pure pursuit steering control and PID speed control. author: Atsushi Sakai (@Atsushi_twi) """ import numpy as np import math import matplotlib.pyplot as plt old_nearest_point_index = None k = 0.1 # look forward gain Lfc = 1.0 # look-ahead distance Kp = 1.0 # speed proportional gain dt = 0.1 # [s] L = 2.9 # [m] wheel base of vehicle show_animation = True class State: def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): self.x = x self.y = y self.yaw = yaw self.v = v self.rear_x = self.x - ((L / 2) * math.cos(self.yaw)) self.rear_y = self.y - ((L / 2) * math.sin(self.yaw)) def update(state, a, delta): state.x = state.x + state.v * math.cos(state.yaw) * dt state.y = state.y + state.v * math.sin(state.yaw) * dt state.yaw = state.yaw + state.v / L * math.tan(delta) * dt state.v = state.v + a * dt state.rear_x = state.x - ((L / 2) * math.cos(state.yaw)) state.rear_y = state.y - ((L / 2) * math.sin(state.yaw)) return state def PIDControl(target, current): a = Kp * (target - current) return a def pure_pursuit_control(state, cx, cy, pind): ind = calc_target_index(state, cx, cy) if pind >= ind: ind = pind if ind < len(cx): tx = cx[ind] ty = cy[ind] else: tx = cx[-1] ty = cy[-1] ind = len(cx) - 1 alpha = math.atan2(ty - state.rear_y, tx - state.rear_x) - state.yaw Lf = k * state.v + Lfc delta = math.atan2(2.0 * L * math.sin(alpha) / Lf, 1.0) return delta, ind def calc_distance(state, point_x, point_y): dx = state.rear_x - point_x dy = state.rear_y - point_y return math.sqrt(dx ** 2 + dy ** 2) def calc_target_index(state, cx, cy): global old_nearest_point_index if old_nearest_point_index is None: # search nearest point index dx = [state.rear_x - icx for icx in cx] dy = [state.rear_y - icy for icy in cy] d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)] ind = d.index(min(d)) old_nearest_point_index = ind else: ind = old_nearest_point_index distance_this_index = calc_distance(state, cx[ind], cy[ind]) while True: ind = ind + 1 if (ind + 1) < len(cx) else ind distance_next_index = calc_distance(state, cx[ind], cy[ind]) if distance_this_index < distance_next_index: break distance_this_index = distance_next_index old_nearest_point_index = ind L = 0.0 Lf = k * state.v + Lfc # search look ahead target point index while Lf > L and (ind + 1) < len(cx): dx = cx[ind] - state.rear_x dy = cy[ind] - state.rear_y L = math.sqrt(dx ** 2 + dy ** 2) ind += 1 return ind def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): """ Plot arrow """ if not isinstance(x, float): for (ix, iy, iyaw) in zip(x, y, yaw): plot_arrow(ix, iy, iyaw) else: plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc, ec=ec, head_width=width, head_length=width) plt.plot(x, y) def main(): # target course cx = np.arange(0, 50, 0.1) cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx] target_speed = 10.0 / 3.6 # [m/s] T = 100.0 # max simulation time # initial state state = State(x=-0.0, y=-3.0, yaw=0.0, v=0.0) lastIndex = len(cx) - 1 time = 0.0 x = [state.x] y = [state.y] yaw = [state.yaw] v = [state.v] t = [0.0] target_ind = calc_target_index(state, cx, cy) while T >= time and lastIndex > target_ind: ai = PIDControl(target_speed, state.v) di, target_ind = pure_pursuit_control(state, cx, cy, target_ind) state = update(state, ai, di) time = time + dt x.append(state.x) y.append(state.y) yaw.append(state.yaw) v.append(state.v) t.append(time) if show_animation: # pragma: no cover plt.cla() plot_arrow(state.x, state.y, state.yaw) plt.plot(cx, cy, "-r", label="course") plt.plot(x, y, "-b", label="trajectory") plt.plot(cx[target_ind], cy[target_ind], "xg", label="target") plt.axis("equal") plt.grid(True) plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4]) plt.pause(0.001) # Test assert lastIndex >= target_ind, "Cannot goal" if show_animation: # pragma: no cover plt.cla() plt.plot(cx, cy, ".r", label="course") plt.plot(x, y, "-b", label="trajectory") plt.legend() plt.xlabel("x[m]") plt.ylabel("y[m]") plt.axis("equal") plt.grid(True) plt.subplots(1) plt.plot(t, [iv * 3.6 for iv in v], "-r") plt.xlabel("Time[s]") plt.ylabel("Speed[km/h]") plt.grid(True) plt.show() if __name__ == '__main__': print("Pure pursuit path tracking simulation start") main()