""" Move to specified pose Author: Daniel Ingram (daniel-s-ingram) Atsushi Sakai (@Atsushi_twi) Seied Muhammad Yazdian (@Muhammad-Yazdian) P. I. Corke, "Robotics, Vision & Control", Springer 2017, ISBN 978-3-319-54413-7 """ import matplotlib.pyplot as plt import numpy as np from random import random class PathFinderController: """ Constructs an instantiate of the PathFinderController for navigating a 3-DOF wheeled robot on a 2D plane Parameters ---------- Kp_rho : The linear velocity gain to translate the robot along a line towards the goal Kp_alpha : The angular velocity gain to rotate the robot towards the goal Kp_beta : The offset angular velocity gain accounting for smooth merging to the goal angle (i.e., it helps the robot heading to be parallel to the target angle.) """ def __init__(self, Kp_rho, Kp_alpha, Kp_beta): self.Kp_rho = Kp_rho self.Kp_alpha = Kp_alpha self.Kp_beta = Kp_beta def calc_control_command(self, x_diff, y_diff, theta, theta_goal): """ Returns the control command for the linear and angular velocities as well as the distance to goal Parameters ---------- x_diff : The position of target with respect to current robot position in x direction y_diff : The position of target with respect to current robot position in y direction theta : The current heading angle of robot with respect to x axis theta_goal: The target angle of robot with respect to x axis Returns ------- rho : The distance between the robot and the goal position v : Command linear velocity w : Command angular velocity """ # Description of local variables: # - alpha is the angle to the goal relative to the heading of the robot # - beta is the angle between the robot's position and the goal # position plus the goal angle # - Kp_rho*rho and Kp_alpha*alpha drive the robot along a line towards # the goal # - Kp_beta*beta rotates the line so that it is parallel to the goal # angle # # Note: # we restrict alpha and beta (angle differences) to the range # [-pi, pi] to prevent unstable behavior e.g. difference going # from 0 rad to 2*pi rad with slight turn rho = np.hypot(x_diff, y_diff) alpha = (np.arctan2(y_diff, x_diff) - theta + np.pi) % (2 * np.pi) - np.pi beta = (theta_goal - theta - alpha + np.pi) % (2 * np.pi) - np.pi v = self.Kp_rho * rho w = self.Kp_alpha * alpha - controller.Kp_beta * beta if alpha > np.pi / 2 or alpha < -np.pi / 2: v = -v return rho, v, w # simulation parameters controller = PathFinderController(9, 15, 3) dt = 0.01 # Robot specifications MAX_LINEAR_SPEED = 15 MAX_ANGULAR_SPEED = 7 show_animation = True def move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal): x = x_start y = y_start theta = theta_start x_diff = x_goal - x y_diff = y_goal - y x_traj, y_traj = [], [] rho = np.hypot(x_diff, y_diff) while rho > 0.001: x_traj.append(x) y_traj.append(y) x_diff = x_goal - x y_diff = y_goal - y rho, v, w = controller.calc_control_command( x_diff, y_diff, theta, theta_goal) if abs(v) > MAX_LINEAR_SPEED: v = np.sign(v) * MAX_LINEAR_SPEED if abs(w) > MAX_ANGULAR_SPEED: w = np.sign(w) * MAX_ANGULAR_SPEED theta = theta + w * dt x = x + v * np.cos(theta) * dt y = y + v * np.sin(theta) * dt if show_animation: # pragma: no cover plt.cla() plt.arrow(x_start, y_start, np.cos(theta_start), np.sin(theta_start), color='r', width=0.1) plt.arrow(x_goal, y_goal, np.cos(theta_goal), np.sin(theta_goal), color='g', width=0.1) plot_vehicle(x, y, theta, x_traj, y_traj) def plot_vehicle(x, y, theta, x_traj, y_traj): # pragma: no cover # Corners of triangular vehicle when pointing to the right (0 radians) p1_i = np.array([0.5, 0, 1]).T p2_i = np.array([-0.5, 0.25, 1]).T p3_i = np.array([-0.5, -0.25, 1]).T T = transformation_matrix(x, y, theta) p1 = np.matmul(T, p1_i) p2 = np.matmul(T, p2_i) p3 = np.matmul(T, p3_i) plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'k-') plt.plot([p2[0], p3[0]], [p2[1], p3[1]], 'k-') plt.plot([p3[0], p1[0]], [p3[1], p1[1]], 'k-') plt.plot(x_traj, y_traj, 'b--') # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.xlim(0, 20) plt.ylim(0, 20) plt.pause(dt) def transformation_matrix(x, y, theta): return np.array([ [np.cos(theta), -np.sin(theta), x], [np.sin(theta), np.cos(theta), y], [0, 0, 1] ]) def main(): for i in range(5): x_start = 20 * random() y_start = 20 * random() theta_start = 2 * np.pi * random() - np.pi x_goal = 20 * random() y_goal = 20 * random() theta_goal = 2 * np.pi * random() - np.pi print("Initial x: %.2f m\nInitial y: %.2f m\nInitial theta: %.2f rad\n" % (x_start, y_start, theta_start)) print("Goal x: %.2f m\nGoal y: %.2f m\nGoal theta: %.2f rad\n" % (x_goal, y_goal, theta_goal)) move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal) if __name__ == '__main__': main()