""" Bidirectional A* grid planning author: Erwin Lejeune (@spida_rwin) See Wikipedia article (https://en.wikipedia.org/wiki/Bidirectional_search) """ import math import matplotlib.pyplot as plt show_animation = True class BidirectionalAStarPlanner: def __init__(self, ox, oy, reso, rr): """ Initialize grid map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] reso: grid resolution [m] rr: robot radius[m] """ self.reso = reso self.rr = rr self.calc_obstacle_map(ox, oy) self.motion = self.get_motion_model() class Node: def __init__(self, x, y, cost, pind): self.x = x # index of grid self.y = y # index of grid self.cost = cost self.pind = pind def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.pind) def planning(self, sx, sy, gx, gy): """ Bidirectional A star path search input: sx: start x position [m] sy: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ nstart = self.Node(self.calc_xyindex(sx, self.minx), self.calc_xyindex(sy, self.miny), 0.0, -1) ngoal = self.Node(self.calc_xyindex(gx, self.minx), self.calc_xyindex(gy, self.miny), 0.0, -1) open_set_A, closed_set_A = dict(), dict() open_set_B, closed_set_B = dict(), dict() open_set_A[self.calc_grid_index(nstart)] = nstart open_set_B[self.calc_grid_index(ngoal)] = ngoal current_A = nstart current_B = ngoal while 1: if len(open_set_A) == 0: print("Open set A is empty..") break if len(open_set_B) == 0: print("Open set B is empty..") break c_id_A = min( open_set_A, key=lambda o: open_set_A[o].cost + self.calc_heuristic(current_B, open_set_A[ o])) current_A = open_set_A[c_id_A] c_id_B = min( open_set_B, key=lambda o: open_set_B[o].cost + self.calc_heuristic(current_A, open_set_B[ o])) current_B = open_set_B[c_id_B] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current_A.x, self.minx), self.calc_grid_position(current_A.y, self.miny), "xc") plt.plot(self.calc_grid_position(current_B.x, self.minx), self.calc_grid_position(current_B.y, self.miny), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit( 0) if event.key == 'escape' else None]) if len(closed_set_A.keys()) % 10 == 0: plt.pause(0.001) if current_A.x == current_B.x and current_A.y == current_B.y: print("Found goal") meetpointA = current_A meetpointB = current_B break # Remove the item from the open set del open_set_A[c_id_A] del open_set_B[c_id_B] # Add it to the closed set closed_set_A[c_id_A] = current_A closed_set_B[c_id_B] = current_B # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): continue_A = False continue_B = False child_node_A = self.Node(current_A.x + self.motion[i][0], current_A.y + self.motion[i][1], current_A.cost + self.motion[i][2], c_id_A) child_node_B = self.Node(current_B.x + self.motion[i][0], current_B.y + self.motion[i][1], current_B.cost + self.motion[i][2], c_id_B) n_id_A = self.calc_grid_index(child_node_A) n_id_B = self.calc_grid_index(child_node_B) # If the node is not safe, do nothing if not self.verify_node(child_node_A): continue_A = True if not self.verify_node(child_node_B): continue_B = True if n_id_A in closed_set_A: continue_A = True if n_id_B in closed_set_B: continue_B = True if not(continue_A): if n_id_A not in open_set_A: open_set_A[n_id_A] = child_node_A # discovered a new node else: if open_set_A[n_id_A].cost > child_node_A.cost: # This path is the best until now. record it open_set_A[n_id_A] = child_node_A if not(continue_B): if n_id_B not in open_set_B: open_set_B[n_id_B] = child_node_B # discovered a new node else: if open_set_B[n_id_B].cost > child_node_B.cost: # This path is the best until now. record it open_set_B[n_id_B] = child_node_B rx, ry = self.calc_final_path_bidir(meetpointA, meetpointB, closed_set_A, closed_set_B) return rx, ry def calc_final_path_bidir(self, meetnode_A, meetnode_B, closed_set_A, closed_set_B): rx_A, ry_A = self.calc_final_path(meetnode_A, closed_set_A) rx_B, ry_B = self.calc_final_path(meetnode_B, closed_set_B) rx_A.reverse() ry_A.reverse() rx = rx_A + rx_B ry = ry_A + ry_B return rx, ry def calc_final_path(self, ngoal, closedset): # generate final course rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [ self.calc_grid_position(ngoal.y, self.miny)] pind = ngoal.pind while pind != -1: n = closedset[pind] rx.append(self.calc_grid_position(n.x, self.minx)) ry.append(self.calc_grid_position(n.y, self.miny)) pind = n.pind return rx, ry @staticmethod def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d def calc_grid_position(self, index, minp): """ calc grid position :param index: :param minp: :return: """ pos = index * self.reso + minp return pos def calc_xyindex(self, position, min_pos): return round((position - min_pos) / self.reso) def calc_grid_index(self, node): return (node.y - self.miny) * self.xwidth + (node.x - self.minx) def verify_node(self, node): px = self.calc_grid_position(node.x, self.minx) py = self.calc_grid_position(node.y, self.miny) if px < self.minx: return False elif py < self.miny: return False elif px >= self.maxx: return False elif py >= self.maxy: return False # collision check if self.obmap[node.x][node.y]: return False return True def calc_obstacle_map(self, ox, oy): self.minx = round(min(ox)) self.miny = round(min(oy)) self.maxx = round(max(ox)) self.maxy = round(max(oy)) print("minx:", self.minx) print("miny:", self.miny) print("maxx:", self.maxx) print("maxy:", self.maxy) self.xwidth = round((self.maxx - self.minx) / self.reso) self.ywidth = round((self.maxy - self.miny) / self.reso) print("xwidth:", self.xwidth) print("ywidth:", self.ywidth) # obstacle map generation self.obmap = [[False for i in range(self.ywidth)] for i in range(self.xwidth)] for ix in range(self.xwidth): x = self.calc_grid_position(ix, self.minx) for iy in range(self.ywidth): y = self.calc_grid_position(iy, self.miny) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obmap[ix][iy] = True break @staticmethod def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstable positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "ob") plt.grid(True) plt.axis("equal") bidir_a_star = BidirectionalAStarPlanner(ox, oy, grid_size, robot_radius) rx, ry = bidir_a_star.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(.0001) plt.show() if __name__ == '__main__': main()