""" Reeds Shepp path planner sample code author Atsushi Sakai(@Atsushi_twi) """ import math import matplotlib.pyplot as plt import numpy as np show_animation = True class Path: """ Path data container """ def __init__(self): # course segment length (negative value is backward segment) self.lengths = [] # course segment type char ("S": straight, "L": left, "R": right) self.ctypes = [] self.L = 0.0 # Total lengths of the path self.x = [] # x positions self.y = [] # y positions self.yaw = [] # orientations [rad] self.directions = [] # directions (1:forward, -1:backward) def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): if isinstance(x, list): for (ix, iy, iyaw) in zip(x, y, yaw): plot_arrow(ix, iy, iyaw) else: plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc, ec=ec, head_width=width, head_length=width) plt.plot(x, y) def mod2pi(x): # Be consistent with fmod in cplusplus here. v = np.mod(x, np.copysign(2.0 * math.pi, x)) if v < -math.pi: v += 2.0 * math.pi else: if v > math.pi: v -= 2.0 * math.pi return v def straight_left_straight(x, y, phi): phi = mod2pi(phi) if y > 0.0 and 0.0 < phi < math.pi * 0.99: xd = - y / math.tan(phi) + x t = xd - math.tan(phi / 2.0) u = phi v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0) return True, t, u, v elif y < 0.0 < phi < math.pi * 0.99: xd = - y / math.tan(phi) + x t = xd - math.tan(phi / 2.0) u = phi v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0) return True, t, u, v return False, 0.0, 0.0, 0.0 def set_path(paths, lengths, ctypes, step_size): path = Path() path.ctypes = ctypes path.lengths = lengths path.L = sum(np.abs(lengths)) # check same path exist for i_path in paths: type_is_same = (i_path.ctypes == path.ctypes) length_is_close = (sum(np.abs(i_path.lengths)) - path.L) <= step_size if type_is_same and length_is_close: return paths # same path found, so do not insert path # check path is long enough if path.L <= step_size: return paths # too short, so do not insert path paths.append(path) return paths def straight_curve_straight(x, y, phi, paths, step_size): flag, t, u, v = straight_left_straight(x, y, phi) if flag: paths = set_path(paths, [t, u, v], ["S", "L", "S"], step_size) flag, t, u, v = straight_left_straight(x, -y, -phi) if flag: paths = set_path(paths, [t, u, v], ["S", "R", "S"], step_size) return paths def polar(x, y): r = math.sqrt(x ** 2 + y ** 2) theta = math.atan2(y, x) return r, theta def left_straight_left(x, y, phi): u, t = polar(x - math.sin(phi), y - 1.0 + math.cos(phi)) if t >= 0.0: v = mod2pi(phi - t) if v >= 0.0: return True, t, u, v return False, 0.0, 0.0, 0.0 def left_right_left(x, y, phi): u1, t1 = polar(x - math.sin(phi), y - 1.0 + math.cos(phi)) if u1 <= 4.0: u = -2.0 * math.asin(0.25 * u1) t = mod2pi(t1 + 0.5 * u + math.pi) v = mod2pi(phi - t + u) if t >= 0.0 >= u: return True, t, u, v return False, 0.0, 0.0, 0.0 def curve_curve_curve(x, y, phi, paths, step_size): flag, t, u, v = left_right_left(x, y, phi) if flag: paths = set_path(paths, [t, u, v], ["L", "R", "L"], step_size) flag, t, u, v = left_right_left(-x, y, -phi) if flag: paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"], step_size) flag, t, u, v = left_right_left(x, -y, -phi) if flag: paths = set_path(paths, [t, u, v], ["R", "L", "R"], step_size) flag, t, u, v = left_right_left(-x, -y, phi) if flag: paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"], step_size) # backwards xb = x * math.cos(phi) + y * math.sin(phi) yb = x * math.sin(phi) - y * math.cos(phi) flag, t, u, v = left_right_left(xb, yb, phi) if flag: paths = set_path(paths, [v, u, t], ["L", "R", "L"], step_size) flag, t, u, v = left_right_left(-xb, yb, -phi) if flag: paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"], step_size) flag, t, u, v = left_right_left(xb, -yb, -phi) if flag: paths = set_path(paths, [v, u, t], ["R", "L", "R"], step_size) flag, t, u, v = left_right_left(-xb, -yb, phi) if flag: paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"], step_size) return paths def curve_straight_curve(x, y, phi, paths, step_size): flag, t, u, v = left_straight_left(x, y, phi) if flag: paths = set_path(paths, [t, u, v], ["L", "S", "L"], step_size) flag, t, u, v = left_straight_left(-x, y, -phi) if flag: paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"], step_size) flag, t, u, v = left_straight_left(x, -y, -phi) if flag: paths = set_path(paths, [t, u, v], ["R", "S", "R"], step_size) flag, t, u, v = left_straight_left(-x, -y, phi) if flag: paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"], step_size) flag, t, u, v = left_straight_right(x, y, phi) if flag: paths = set_path(paths, [t, u, v], ["L", "S", "R"], step_size) flag, t, u, v = left_straight_right(-x, y, -phi) if flag: paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"], step_size) flag, t, u, v = left_straight_right(x, -y, -phi) if flag: paths = set_path(paths, [t, u, v], ["R", "S", "L"], step_size) flag, t, u, v = left_straight_right(-x, -y, phi) if flag: paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"], step_size) return paths def left_straight_right(x, y, phi): u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi)) u1 = u1 ** 2 if u1 >= 4.0: u = math.sqrt(u1 - 4.0) theta = math.atan2(2.0, u) t = mod2pi(t1 + theta) v = mod2pi(t - phi) if t >= 0.0 and v >= 0.0: return True, t, u, v return False, 0.0, 0.0, 0.0 def generate_path(q0, q1, max_curvature, step_size): dx = q1[0] - q0[0] dy = q1[1] - q0[1] dth = q1[2] - q0[2] c = math.cos(q0[2]) s = math.sin(q0[2]) x = (c * dx + s * dy) * max_curvature y = (-s * dx + c * dy) * max_curvature paths = [] paths = straight_curve_straight(x, y, dth, paths, step_size) paths = curve_straight_curve(x, y, dth, paths, step_size) paths = curve_curve_curve(x, y, dth, paths, step_size) return paths def calc_interpolate_dists_list(lengths, step_size): interpolate_dists_list = [] for length in lengths: d_dist = step_size if length >= 0.0 else -step_size interp_dists = np.arange(0.0, length, d_dist) interp_dists = np.append(interp_dists, length) interpolate_dists_list.append(interp_dists) return interpolate_dists_list def generate_local_course(lengths, modes, max_curvature, step_size): interpolate_dists_list = calc_interpolate_dists_list(lengths, step_size) origin_x, origin_y, origin_yaw = 0.0, 0.0, 0.0 xs, ys, yaws, directions = [], [], [], [] for (interp_dists, mode, length) in zip(interpolate_dists_list, modes, lengths): for dist in interp_dists: x, y, yaw, direction = interpolate(dist, length, mode, max_curvature, origin_x, origin_y, origin_yaw) xs.append(x) ys.append(y) yaws.append(yaw) directions.append(direction) origin_x = xs[-1] origin_y = ys[-1] origin_yaw = yaws[-1] return xs, ys, yaws, directions def interpolate(dist, length, mode, max_curvature, origin_x, origin_y, origin_yaw): if mode == "S": x = origin_x + dist / max_curvature * math.cos(origin_yaw) y = origin_y + dist / max_curvature * math.sin(origin_yaw) yaw = origin_yaw else: # curve ldx = math.sin(dist) / max_curvature ldy = 0.0 yaw = None if mode == "L": # left turn ldy = (1.0 - math.cos(dist)) / max_curvature yaw = origin_yaw + dist elif mode == "R": # right turn ldy = (1.0 - math.cos(dist)) / -max_curvature yaw = origin_yaw - dist gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy x = origin_x + gdx y = origin_y + gdy return x, y, yaw, 1 if length > 0.0 else -1 def pi_2_pi(angle): return (angle + math.pi) % (2 * math.pi) - math.pi def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size): q0 = [sx, sy, syaw] q1 = [gx, gy, gyaw] paths = generate_path(q0, q1, maxc, step_size) for path in paths: xs, ys, yaws, directions = generate_local_course(path.lengths, path.ctypes, maxc, step_size * maxc) # convert global coordinate path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for (ix, iy) in zip(xs, ys)] path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for (ix, iy) in zip(xs, ys)] path.yaw = [pi_2_pi(yaw + q0[2]) for yaw in yaws] path.directions = directions path.lengths = [length / maxc for length in path.lengths] path.L = path.L / maxc return paths def reeds_shepp_path_planning(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2): paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size) if not paths: return None, None, None, None, None # could not generate any path # search minimum cost path best_path_index = paths.index(min(paths, key=lambda p: abs(p.L))) b_path = paths[best_path_index] return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths def main(): print("Reeds Shepp path planner sample start!!") start_x = -1.0 # [m] start_y = -4.0 # [m] start_yaw = np.deg2rad(-20.0) # [rad] end_x = 5.0 # [m] end_y = 5.0 # [m] end_yaw = np.deg2rad(25.0) # [rad] curvature = 0.1 step_size = 0.05 xs, ys, yaws, modes, lengths = reeds_shepp_path_planning(start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature, step_size) if show_animation: # pragma: no cover plt.cla() plt.plot(xs, ys, label="final course " + str(modes)) print(f"{lengths=}") # plotting plot_arrow(start_x, start_y, start_yaw) plot_arrow(end_x, end_y, end_yaw) plt.legend() plt.grid(True) plt.axis("equal") plt.show() if not xs: assert False, "No path" if __name__ == '__main__': main()