#! /usr/bin/python """ Path tracking simulation with rear wheel feedback steering control and PID speed control. author: Atsushi Sakai """ import math import matplotlib.pyplot as plt import unicycle_model from pycubicspline import pycubicspline Kp = 1.0 # speed propotional gain animation = True # animation = False def PIDControl(target, current): a = Kp * (target - current) return a def pi_2_pi(angle): while(angle > math.pi): angle = angle - 2.0 * math.pi while(angle < -math.pi): angle = angle + 2.0 * math.pi return angle def rear_wheel_feedback_control(state, cx, cy, cyaw, ck, preind): KTH = 1.0 KE = 0.5 ind, e = calc_nearest_index(state, cx, cy, cyaw) k = ck[ind] v = state.v th_e = pi_2_pi(state.yaw - cyaw[ind]) omega = v * k * math.cos(th_e) / (1.0 - k * e) - \ KTH * abs(v) * th_e - KE * v * math.sin(th_e) * e / th_e # pass if th_e == 0.0 or omega == 0.0: return 0.0, ind delta = math.atan2(unicycle_model.L * omega / v, 1.0) # print(k, v, e, th_e, omega, delta) return delta, ind def calc_nearest_index(state, cx, cy, cyaw): dx = [state.x - icx for icx in cx] dy = [state.y - icy for icy in cy] d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)] mind = min(d) ind = d.index(mind) dxl = cx[ind] - state.x dyl = cy[ind] - state.y angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl)) if angle < 0: mind *= -1 return ind, mind def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal): T = 500.0 # max simulation time goal_dis = 0.3 stop_speed = 0.05 state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0) time = 0.0 x = [state.x] y = [state.y] yaw = [state.yaw] v = [state.v] t = [0.0] target_ind = calc_nearest_index(state, cx, cy, cyaw) while T >= time: di, target_ind = rear_wheel_feedback_control( state, cx, cy, cyaw, ck, target_ind) ai = PIDControl(speed_profile[target_ind], state.v) state = unicycle_model.update(state, ai, di) if abs(state.v) <= stop_speed: target_ind += 1 time = time + unicycle_model.dt # check goal dx = state.x - goal[0] dy = state.y - goal[1] if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis: print("Goal") break x.append(state.x) y.append(state.y) yaw.append(state.yaw) v.append(state.v) t.append(time) if target_ind % 1 == 0 and animation: plt.cla() plt.plot(cx, cy, "-r", label="course") plt.plot(x, y, "ob", label="trajectory") plt.plot(cx[target_ind], cy[target_ind], "xg", label="target") plt.axis("equal") plt.grid(True) plt.title("speed:" + str(round(state.v, 2)) + "tind:" + str(target_ind)) plt.pause(0.0001) return t, x, y, yaw, v def set_stop_point(target_speed, cx, cy, cyaw): speed_profile = [target_speed] * len(cx) d = [] direction = 1.0 # Set stop point for i in range(len(cx) - 1): dx = cx[i + 1] - cx[i] dy = cy[i + 1] - cy[i] td = math.sqrt(dx ** 2.0 + dy ** 2.0) d.append(td) dyaw = cyaw[i + 1] - cyaw[i] switch = math.pi / 4.0 <= dyaw < math.pi / 2.0 if switch: direction *= -1 if direction != 1.0: speed_profile[i] = - target_speed else: speed_profile[i] = target_speed if switch: speed_profile[i] = 0.0 speed_profile[-1] = 0.0 d.append(d[-1]) return speed_profile, d def calc_speed_profile(cx, cy, cyaw, target_speed): speed_profile, d = set_stop_point(target_speed, cx, cy, cyaw) # flg, ax = plt.subplots(1) # plt.plot(speed_profile, "-r") # plt.show() return speed_profile def main(): print("rear wheel feedback tracking start!!") ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0] ay = [0.0, 0.0, 5.0, 6.5, 3.0, 5.0, -2.0] goal = [ax[-1], ay[-1]] cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1) target_speed = 10.0 / 3.6 sp = calc_speed_profile(cx, cy, cyaw, target_speed) t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal) flg, _ = plt.subplots(1) print(len(ax), len(ay)) plt.plot(ax, ay, "xb", label="input") plt.plot(cx, cy, "-r", label="spline") plt.plot(x, y, "-g", label="tracking") plt.grid(True) plt.axis("equal") plt.xlabel("x[m]") plt.ylabel("y[m]") plt.legend() flg, ax = plt.subplots(1) plt.plot(s, [math.degrees(iyaw) for iyaw in cyaw], "-r", label="yaw") plt.grid(True) plt.legend() plt.xlabel("line length[m]") plt.ylabel("yaw angle[deg]") flg, ax = plt.subplots(1) plt.plot(s, ck, "-r", label="curvature") plt.grid(True) plt.legend() plt.xlabel("line length[m]") plt.ylabel("curvature [1/m]") plt.show() if __name__ == '__main__': main()