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1 Problem Formulation

Let a robot’s trajectory through its environment be represented by a sequence of N poses: p1,p2, . . . ,pN .
Each pose lies on a manifold: pi ∈M. Simple examples of manifolds used in Graph SLAM include 1-D, 2-D,
and 3-D space, i.e., R, R2, and R3. These environments are rectilinear, meaning that there is no concept
of orientation. By contrast, in SE(2) problem settings a robot’s pose consists of its location in R2 and its
orientation θ. Similarly, in SE(3) a robot’s pose consists of its location in R3 and its orientation, which can
be represented via Euler angles, quaternions, or SO(3) rotation matrices.

As the robot explores its environment, it collects a set of M measurements Z = {zj}. Examples of such
measurements include odometry, GPS, and IMU data. Given a set of poses p1, . . . ,pN , we can compute the
estimated measurement ẑj(p1, . . . ,pN ). We can then compute the residual ej(zj , ẑj) for measurement j.
The formula for the residual depends on the type of measurement. As an example, let z1 be an odometry
measurement that was collected when the robot traveled from p1 to p2. The expected measurement and the
residual are computed as

ẑ1(p1,p2) = p2 	 p1

e1(z1, ẑ1) = z1 	 ẑ1 = z1 	 (p2 	 p1),

where the 	 operator indicates inverse pose composition. We model measurement zj as having independent
Gaussian noise with zero mean and covariance matrix Ω−1

j ; we refer to Ωj as the information matrix for
measurement j. That is,

p(zj | p1, . . . ,pN ) = ηj exp
(
(−ej(zj , ẑj))TΩjej(zj , ẑj)

)
, (1)

where ηj is the normalization constant.
The objective of Graph SLAM is to find the maximum likelihood set of poses given the measurements

Z = {zj}; in other words, we want to find

arg max
p1,...,pN

p(p1, . . . ,pN | Z)

Using Bayes’ rule, we can write this probability as

p(p1, . . . ,pN | Z) =
p(Z | p1, . . . ,pN )p(p1, . . . ,pN )

p(Z)

∝ p(Z | p1, . . . ,pN ), (2)

since p(Z) is a constant (albeit, an unknown constant) and we assume that p(p1, . . . ,pN ) is uniformly
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distributed [3]. Therefore, we can use (1) and (2) to simplify the Graph SLAM optimization as follows:

arg max
p1,...,pN

p(p1, . . . ,pN | Z) = arg max
p1,...,pN

p(Z | p1, . . . ,pN )

= arg max
p1,...,pN

M∏
j=1

p(zj | p1, . . . ,pN )

= arg max
p1,...,pN

M∏
j=1

exp
(
−(ej(zj , ẑj))

TΩjej(zj , ẑj)
)

= arg min
p1,...,pN

M∑
j=1

(ej(zj , ẑj))
TΩjej(zj , ẑj).

We define

χ2 :=

M∑
j=1

(ej(zj , ẑj))
TΩjej(zj , ẑj),

and this is what we seek to minimize.

2 Dimensionality and Pose Representation

Before proceeding further, it is helpful to discuss the dimensionality of the problem. We have:

� A set of N poses p1,p2, . . . ,pN , where each pose lies on the manifold M

– Each pose pi is represented as a vector in (a subset of) Rd. For example:

◦ An SE(2) pose is typically represented as (x, y, θ), and thus d = 3.

◦ An SE(3) pose is typically represented as (x, y, z, qx, qy, qz, qw), where (x, y, z) is a point in
R3 and (qx, qy, qz, qw) is a quaternion, and so d = 7. For more information about SE(3)
parameterizations and pose transformations, see [1].

– We also need to be able to represent each pose compactly as a vector in (a subset of) Rc.

◦ Since an SE(2) pose has three degrees of freedom, the (x, y, θ) representation is again sufficient
and c = 3.

◦ An SE(3) pose only has six degrees of freedom, and we can represent it compactly as
(x, y, z, qx, qy, qz), and thus c = 6.

– We use the � operator to indicate pose composition when one or both of the poses are represented
compactly. The output can be a pose in M or a vector in Rc, as required by context.

� A set of M measurements Z = {z1, z2, . . . , zM}

– Each measurement’s dimensionality can be unique, and we will use • to denote a “wildcard”
variable.

– Measurement zj ∈ R• has an associated information matrix Ωj ∈ R•×• and residual function
ej(zj , ẑj) = ej(zj ,p1, . . . ,pN ) ∈ R•.

– A measurement could, in theory, constrain anywhere from 1 pose to all N poses. In practice, each
measurement usually constrains only 1 or 2 poses.
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3 Graph SLAM Algorithm

The “Graph” in Graph SLAM refers to the fact that we view the problem as a graph. The graph has a set V
of N vertices, where each vertex vi has an associated pose pi. Similarly, the graph has a set E of M edges,
where each edge ej has an associated measurement zj . In practice, the edges in this graph are either unary
(i.e., a loop) or binary. (Note: ej refers to the edge in the graph associated with measurement zj , whereas ej
refers to the residual function associated with zj .) For more information about the Graph SLAM algorithm,
see [2].

We want to optimize

χ2 =
∑
ej∈E

eTj Ωjej .

Let xi ∈ Rc be the compact representation of pose pi ∈M, and let

x :=


x1

x2

...
xN

 ∈ RcN

We will solve this optimization problem iteratively. Let

xk+1 := xk � ∆xk =


x1 � ∆x1

x2 � ∆x2

...
xN � ∆x2

 (3)

The χ2 error at iteration k + 1 is

χ2
k+1 =

∑
ej∈E

[
ej(x

k+1)
]T︸ ︷︷ ︸

1×•

Ωj︸︷︷︸
•×•

ej(x
k+1)︸ ︷︷ ︸
•×1

. (4)

We will linearize the residuals as:

ej(x
k+1) = ej(x

k � ∆xk)

≈ ej(x
k) +

∂

∂∆xk

[
ej(x

k � ∆xk)
]

∆xk

= ej(x
k) +

(
∂ej(x

k � ∆xk)

∂(xk � ∆xk)

∣∣∣∣
∆xk=0

)
∂(xk � ∆xk)

∂∆xk
∆xk. (5)

Plugging (5) into (4), we get:

χ2
k+1 ≈

∑
ej∈E

[ej(x
k)]T︸ ︷︷ ︸

1×•

Ωj︸︷︷︸
•×•

ej(x
k)︸ ︷︷ ︸

•×1

+
∑
ej∈E

[ej(x
k)]T︸ ︷︷ ︸

1×•

Ωj︸︷︷︸
•×•

(
∂ej(x

k � ∆xk)

∂(xk � ∆xk)

∣∣∣∣
∆xk=0

)
︸ ︷︷ ︸

•×dN

∂(xk � ∆xk)

∂∆xk︸ ︷︷ ︸
dN×cN

∆xk︸︷︷︸
cN×1

+
∑
ej∈E

(∆xk)T︸ ︷︷ ︸
1×cN

(
∂(xk � ∆xk)

∂∆xk

)T

︸ ︷︷ ︸
cN×dN

(
∂ej(x

k � ∆xk)

∂(xk � ∆xk)

∣∣∣∣
∆xk=0

)T

︸ ︷︷ ︸
dN×•

Ωj︸︷︷︸
•×•

(
∂ej(x

k � ∆xk)

∂(xk � ∆xk)

∣∣∣∣
∆xk=0

)
︸ ︷︷ ︸

•×dN

∂(xk � ∆xk)

∂∆xk︸ ︷︷ ︸
dN×cN

∆xk︸︷︷︸
cN×1

= χ2
k + 2bT∆xk + (∆xk)TH∆xk,

3



where

bT =
∑
ej∈E

[ej(x
k)]T︸ ︷︷ ︸

1×•

Ωj︸︷︷︸
•×•

(
∂ej(x

k � ∆xk)

∂(xk � ∆xk)

∣∣∣∣
∆xk=0

)
︸ ︷︷ ︸

•×dN

∂(xk � ∆xk)

∂∆xk︸ ︷︷ ︸
dN×cN

H =
∑
ej∈E

(
∂(xk � ∆xk)

∂∆xk

)T

︸ ︷︷ ︸
cN×dN

(
∂ej(x

k � ∆xk)

∂(xk � ∆xk)

∣∣∣∣
∆xk=0

)T

︸ ︷︷ ︸
dN×•

Ωj︸︷︷︸
•×•

(
∂ej(x

k � ∆xk)

∂(xk � ∆xk)

∣∣∣∣
∆xk=0

)
︸ ︷︷ ︸

•×dN

∂(xk � ∆xk)

∂∆xk︸ ︷︷ ︸
dN×cN

.

Using this notation, we obtain the optimal update as

∆xk = −H−1b. (6)

We apply this update to the poses via (3) and repeat until convergence.
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