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1 Problem Formulation

Let a robot’s trajectory through its environment be represented by a sequence of N poses: p1,p2,--.,PN-
Each pose lies on a manifold: p; € M. Simple examples of manifolds used in Graph SLAM include 1-D, 2-D,
and 3-D space, i.e., R, R?, and R3. These environments are rectilinear, meaning that there is no concept
of orientation. By contrast, in SE(2) problem settings a robot’s pose consists of its location in R? and its
orientation #. Similarly, in SE(3) a robot’s pose consists of its location in R3 and its orientation, which can
be represented via Euler angles, quaternions, or SO(3) rotation matrices.

As the robot explores its environment, it collects a set of M measurements Z = {z;}. Examples of such
measurements include odometry, GPS, and IMU data. Given a set of poses p1,...,pn, We can compute the
estimated measurement z;(pi,...,pn). We can then compute the residual e;(z;,2;) for measurement j.
The formula for the residual depends on the type of measurement. As an example, let z; be an odometry
measurement that was collected when the robot traveled from p; to ps. The expected measurement and the
residual are computed as

z1(p1,P2) = P29 P1
e (21,21) =21 921 =21 © (P2 O P1),

where the © operator indicates inverse pose composition. We model measurement z; as having independent
Gaussian noise with zero mean and covariance matrix Q;l; we refer to € as the information matriz for
measurement j. That is,

p(z; | P1,.-..pN) = njexp ((—e;(25,2;)) Qe;(z;,25)) (1)

where 7; is the normalization constant.
The objective of Graph SLAM is to find the maximum likelihood set of poses given the measurements
Z = {z;}; in other words, we want to find

argmax p(pi,...,PN | Z)
P1,--,PN

Using Bayes’ rule, we can write this probability as

p(Z ‘ p17"'apN)p(pla'~'7pN)

p(p177pN|Z):

p(Z)
OCP(Z‘Pl,,I)N), (2)
since p(Z) is a constant (albeit, an unknown constant) and we assume that p(pi1,...,pn) is uniformly



distributed [3]. Therefore, we can use (1) and (2) to simplify the Graph SLAM optimization as follows:

arg max p(pla"'va | Z) = argmax p(Z | pla"'apN)
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M
= argmapr(Zj | P1,---,PN)
PLoPN G
M
= argmax | [ exp (—(e;(z;,2,))"Qje;(z;,2;))
Pi, PN Gy
M
= arg min Z(ej (Zj7 ij))TQjej (Zj, 2])

P1.PN T

We define

M
X =) (es(z,25)) Q€525 2),
j:

—

and this is what we seek to minimize.

2 Dimensionality and Pose Representation

Before proceeding further, it is helpful to discuss the dimensionality of the problem. We have:
e A set of N poses p1,p2,...,Pn, where each pose lies on the manifold M

— Each pose p; is represented as a vector in (a subset of) RY. For example:

o An SE(2) pose is typically represented as (x,y, ), and thus d = 3.

o An SE(3) pose is typically represented as (z,y, 2, ¢z, Gy ¢z, ¢w), Where (z,y,2) is a point in
R? and (¢z, gy, 4z, qw) is a quaternion, and so d = 7. For more information about SF(3)
parameterizations and pose transformations, see [1].

— We also need to be able to represent each pose compactly as a vector in (a subset of) RC.

o Since an SE(2) pose has three degrees of freedom, the (z, y, §) representation is again sufficient
and ¢ = 3.

o An SE(3) pose only has six degrees of freedom, and we can represent it compactly as
(2,9, 2,42, ¢y, ¢=), and thus ¢ = 6.

— We use the H operator to indicate pose composition when one or both of the poses are represented

compactly. The output can be a pose in M or a vector in R, as required by context.
e A set of M measurements Z = {z1,22,...,Zp}

— Each measurement’s dimensionality can be unique, and we will use e to denote a “wildcard”
variable.

— Measurement z; € R® has an associated information matrix Q; € R**® and residual function
eJ(Z]72J) = ej(zj7p1a .. 7pN) €R®.

— A measurement could, in theory, constrain anywhere from 1 pose to all N poses. In practice, each
measurement usually constrains only 1 or 2 poses.



3 Graph SLAM Algorithm

The “Graph” in Graph SLAM refers to the fact that we view the problem as a graph. The graph has a set V
of N vertices, where each vertex v; has an associated pose p;. Similarly, the graph has a set £ of M edges,
where each edge e; has an associated measurement z;. In practice, the edges in this graph are either unary
(i.e., aloop) or binary. (Note: e; refers to the edge in the graph associated with measurement z;, whereas e;
refers to the residual function associated with z;.) For more information about the Graph SLAM algorithm,
see [2].

We want to optimize
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Let x; € R® be the compact representation of pose p; € M, and let
X1
X2
x:=| .| erRN

XN

We will solve this optimization problem iteratively. Let

X1 H AXl

X2 H AXQ
xM = xFEAXF = ) (3)

xy B Ax,

The 2 error at iteration k + 1 is
-

Xip1 = D [ ("] 9 e;(x*). (4)
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We will linearize the residuals as:
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Plugging (5) into (4), we get:
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where
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Using this notation, we obtain the optimal update as
Ax* = —H 'b. (6)

We apply this update to the poses via (3) and repeat until convergence.
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