#!/usr/bin/python # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import random import math delta = 0.1 minXY=-5.0 maxXY=5.0 nContour=50 alpha=0.001 def Jacob(state): u""" jacobi matrix of Himmelblau's function """ x=state[0] y=state[1] dx=4*x**3+4*x*y-44*x+2*x+2*y**2-14 dy=2*x**2+4*x*y+4*y**3-26*y-22 J=np.array([dx,dy]) return J def HimmelblauFunction(x,y): u""" Himmelblau's function see Himmelblau's function - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Himmelblau%27s_function """ return (x**2+y-11)**2+(x+y**2-7)**2 def CreateMeshData(): x = np.arange(minXY, maxXY, delta) y = np.arange(minXY, maxXY, delta) X, Y = np.meshgrid(x, y) Z=[HimmelblauFunction(x,y) for (x,y) in zip(X,Y)] return(X,Y,Z) def ConjugateGradientMethod(start,Jacob): u""" Conjugate Gradient Method Optimization """ result=start x=start preJ=None while 1: J=Jacob(x) #convergence check sumJ=sum([abs(alpha*j) for j in J]) if sumJ<=0.01: print("OK") break if preJ is not None: beta=np.linalg.norm(J)**2/np.linalg.norm(preJ)**2 grad=-1.0*J+beta*grad else: grad=-1.0*J x=x+[alpha*g for g in grad] result=np.vstack((result,x)) # print(x) if math.isnan(x[0]): print("nan") break preJ=-1.0*J return result # Main start=np.array([random.uniform(minXY,maxXY),random.uniform(minXY,maxXY)]) result=ConjugateGradientMethod(start,Jacob) (X,Y,Z)=CreateMeshData() CS = plt.contour(X, Y, Z,nContour) # plt.clabel(CS, inline=1, fontsize=10) # plt.title('Simplest default with labels') plt.plot(start[0],start[1],"xr"); optX=[x[0] for x in result] optY=[x[1] for x in result] plt.plot(optX,optY,"-r"); plt.show()