""" 2D gaussian grid map sample author: Atsushi Sakai (@Atsushi_twi) """ import math import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm EXTEND_AREA = 10.0 # [m] grid map extention length show_animation = True def generate_gaussian_grid_map(ox, oy, xyreso, std): minx, miny, maxx, maxy, xw, yw = calc_grid_map_config(ox, oy, xyreso) gmap = [[0.0 for i in range(yw)] for i in range(xw)] for ix in range(xw): for iy in range(yw): x = ix * xyreso + minx y = iy * xyreso + miny # Search minimum distance mindis = float("inf") for (iox, ioy) in zip(ox, oy): d = math.sqrt((iox - x)**2 + (ioy - y)**2) if mindis >= d: mindis = d pdf = (1.0 - norm.cdf(mindis, 0.0, std)) gmap[ix][iy] = pdf return gmap, minx, maxx, miny, maxy def calc_grid_map_config(ox, oy, xyreso): minx = round(min(ox) - EXTEND_AREA / 2.0) miny = round(min(oy) - EXTEND_AREA / 2.0) maxx = round(max(ox) + EXTEND_AREA / 2.0) maxy = round(max(oy) + EXTEND_AREA / 2.0) xw = int(round((maxx - minx) / xyreso)) yw = int(round((maxy - miny) / xyreso)) return minx, miny, maxx, maxy, xw, yw def draw_heatmap(data, minx, maxx, miny, maxy, xyreso): x, y = np.mgrid[slice(minx - xyreso / 2.0, maxx + xyreso / 2.0, xyreso), slice(miny - xyreso / 2.0, maxy + xyreso / 2.0, xyreso)] plt.pcolor(x, y, data, vmax=1.0, cmap=plt.cm.Blues) plt.axis("equal") def main(): print(__file__ + " start!!") xyreso = 0.5 # xy grid resolution STD = 5.0 # standard diviation for gaussian distribution for i in range(5): ox = (np.random.rand(4) - 0.5) * 10.0 oy = (np.random.rand(4) - 0.5) * 10.0 gmap, minx, maxx, miny, maxy = generate_gaussian_grid_map( ox, oy, xyreso, STD) if show_animation: plt.cla() draw_heatmap(gmap, minx, maxx, miny, maxy, xyreso) plt.plot(ox, oy, "xr") plt.plot(0.0, 0.0, "ob") plt.pause(1.0) if __name__ == '__main__': main()