""" Path Planning Sample Code with Closed loop RRT for car like robot. author: AtsushiSakai(@Atsushi_twi) """ import sys sys.path.append("../ReedsSheppPath/") import random import math import copy import numpy as np import pure_pursuit import matplotlib.pyplot as plt import reeds_shepp_path_planning import unicycle_model show_animation = True target_speed = 10.0 / 3.6 STEP_SIZE = 0.1 class RRT(): """ Class for RRT Planning """ def __init__(self, start, goal, obstacleList, randArea, maxIter=200): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Ramdom Samping Area [min,max] """ self.start = Node(start[0], start[1], start[2]) self.end = Node(goal[0], goal[1], goal[2]) self.minrand = randArea[0] self.maxrand = randArea[1] self.obstacleList = obstacleList self.maxIter = maxIter def try_goal_path(self): goal = Node(self.end.x, self.end.y, self.end.yaw) newNode = self.steer(goal, len(self.nodeList) - 1) if newNode is None: return if self.CollisionCheck(newNode, self.obstacleList): # print("goal path is OK") self.nodeList.append(newNode) def Planning(self, animation=True): """ Pathplanning animation: flag for animation on or off """ self.nodeList = [self.start] self.try_goal_path() for i in range(self.maxIter): rnd = self.get_random_point() nind = self.GetNearestListIndex(self.nodeList, rnd) newNode = self.steer(rnd, nind) # print(newNode.cost) if newNode is None: continue if self.CollisionCheck(newNode, self.obstacleList): nearinds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearinds) if newNode is None: continue self.nodeList.append(newNode) self.rewire(newNode, nearinds) self.try_goal_path() if animation and i % 5 == 0: self.DrawGraph(rnd=rnd) # generate coruse path_indexs = self.get_best_last_indexs() flag, x, y, yaw, v, t, a, d = self.search_best_feasible_path( path_indexs) return flag, x, y, yaw, v, t, a, d def search_best_feasible_path(self, path_indexs): print("Start search feasible path") best_time = float("inf") fx = None # pure pursuit tracking for ind in path_indexs: path = self.gen_final_course(ind) flag, x, y, yaw, v, t, a, d = self.check_tracking_path_is_feasible( path) if flag and best_time >= t[-1]: print("feasible path is found") best_time = t[-1] fx, fy, fyaw, fv, ft, fa, fd = x, y, yaw, v, t, a, d print("best time is") print(best_time) if fx: fx.append(self.end.x) fy.append(self.end.y) fyaw.append(self.end.yaw) return True, fx, fy, fyaw, fv, ft, fa, fd else: return False, None, None, None, None, None, None, None def calc_tracking_path(self, path): path = np.matrix(path[::-1]) ds = 0.2 for i in range(10): lx = path[-1, 0] ly = path[-1, 1] lyaw = path[-1, 2] move_yaw = math.atan2(path[-2, 1] - ly, path[-2, 0] - lx) if abs(lyaw - move_yaw) >= math.pi / 2.0: print("back") ds *= -1 lstate = np.matrix( [lx + ds * math.cos(lyaw), ly + ds * math.sin(lyaw), lyaw]) # print(lstate) path = np.vstack((path, lstate)) return path def check_tracking_path_is_feasible(self, path): # print("check_tracking_path_is_feasible") cx = np.array(path[:, 0]) cy = np.array(path[:, 1]) cyaw = np.array(path[:, 2]) goal = [cx[-1], cy[-1], cyaw[-1]] cx, cy, cyaw = pure_pursuit.extend_path(cx, cy, cyaw) speed_profile = pure_pursuit.calc_speed_profile( cx, cy, cyaw, target_speed) t, x, y, yaw, v, a, d, find_goal = pure_pursuit.closed_loop_prediction( cx, cy, cyaw, speed_profile, goal) yaw = [self.pi_2_pi(iyaw) for iyaw in yaw] if not find_goal: print("cannot reach goal") if abs(yaw[-1] - goal[2]) >= math.pi / 4.0: print("final angle is bad") find_goal = False travel = sum([abs(iv) * unicycle_model.dt for iv in v]) # print(travel) origin_travel = sum([math.sqrt(dx ** 2 + dy ** 2) for (dx, dy) in zip(np.diff(cx), np.diff(cy))]) # print(origin_travel) if (travel / origin_travel) >= 5.0: print("path is too long") find_goal = False if not self.CollisionCheckWithXY(x, y, self.obstacleList): print("This path is collision") find_goal = False return find_goal, x, y, yaw, v, t, a, d def choose_parent(self, newNode, nearinds): if len(nearinds) == 0: return newNode dlist = [] for i in nearinds: tNode = self.steer(newNode, i) if tNode is None: continue if self.CollisionCheck(tNode, self.obstacleList): dlist.append(tNode.cost) else: dlist.append(float("inf")) mincost = min(dlist) minind = nearinds[dlist.index(mincost)] if mincost == float("inf"): print("mincost is inf") return newNode newNode = self.steer(newNode, minind) if newNode is None: return None return newNode def pi_2_pi(self, angle): return (angle + math.pi) % (2 * math.pi) - math.pi def steer(self, rnd, nind): # print(rnd) nearestNode = self.nodeList[nind] px, py, pyaw, mode, clen = reeds_shepp_path_planning.reeds_shepp_path_planning( nearestNode.x, nearestNode.y, nearestNode.yaw, rnd.x, rnd.y, rnd.yaw, unicycle_model.curvature_max, STEP_SIZE) if px is None: return None newNode = copy.deepcopy(nearestNode) newNode.x = px[-1] newNode.y = py[-1] newNode.yaw = pyaw[-1] newNode.path_x = px newNode.path_y = py newNode.path_yaw = pyaw newNode.cost += sum([abs(c) for c in clen]) newNode.parent = nind return newNode def get_random_point(self): rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(self.minrand, self.maxrand), random.uniform(-math.pi, math.pi) ] node = Node(rnd[0], rnd[1], rnd[2]) return node def get_best_last_indexs(self): # print("get_best_last_index") YAWTH = np.deg2rad(1.0) XYTH = 0.5 goalinds = [] for (i, node) in enumerate(self.nodeList): if self.calc_dist_to_goal(node.x, node.y) <= XYTH: goalinds.append(i) print("OK XY TH num is") print(len(goalinds)) # angle check fgoalinds = [] for i in goalinds: if abs(self.nodeList[i].yaw - self.end.yaw) <= YAWTH: fgoalinds.append(i) print("OK YAW TH num is") print(len(fgoalinds)) return fgoalinds def gen_final_course(self, goalind): path = [[self.end.x, self.end.y, self.end.yaw]] while self.nodeList[goalind].parent is not None: node = self.nodeList[goalind] path_x = reversed(node.path_x) path_y = reversed(node.path_y) path_yaw = reversed(node.path_yaw) for (ix, iy, iyaw) in zip(path_x, path_y, path_yaw): path.append([ix, iy, iyaw]) # path.append([node.x, node.y]) goalind = node.parent path.append([self.start.x, self.start.y, self.start.yaw]) path = np.matrix(path[::-1]) return path def calc_dist_to_goal(self, x, y): return np.linalg.norm([x - self.end.x, y - self.end.y]) def find_near_nodes(self, newNode): nnode = len(self.nodeList) r = 50.0 * math.sqrt((math.log(nnode) / nnode)) # r = self.expandDis * 5.0 dlist = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 + (node.yaw - newNode.yaw) ** 2 for node in self.nodeList] nearinds = [dlist.index(i) for i in dlist if i <= r ** 2] return nearinds def rewire(self, newNode, nearinds): nnode = len(self.nodeList) for i in nearinds: nearNode = self.nodeList[i] tNode = self.steer(nearNode, nnode - 1) if tNode is None: continue obstacleOK = self.CollisionCheck(tNode, self.obstacleList) imporveCost = nearNode.cost > tNode.cost if obstacleOK and imporveCost: # print("rewire") self.nodeList[i] = tNode def DrawGraph(self, rnd=None): """ Draw Graph """ if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") for node in self.nodeList: if node.parent is not None: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacleList: plt.plot(ox, oy, "ok", ms=30 * size) reeds_shepp_path_planning.plot_arrow( self.start.x, self.start.y, self.start.yaw) reeds_shepp_path_planning.plot_arrow( self.end.x, self.end.y, self.end.yaw) plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01) def GetNearestListIndex(self, nodeList, rnd): dlist = [(node.x - rnd.x) ** 2 + (node.y - rnd.y) ** 2 + (node.yaw - rnd.yaw) ** 2 for node in nodeList] minind = dlist.index(min(dlist)) return minind def CollisionCheck(self, node, obstacleList): for (ox, oy, size) in obstacleList: for (ix, iy) in zip(node.path_x, node.path_y): dx = ox - ix dy = oy - iy d = dx * dx + dy * dy if d <= size ** 2: return False # collision return True # safe def CollisionCheckWithXY(self, x, y, obstacleList): for (ox, oy, size) in obstacleList: for (ix, iy) in zip(x, y): dx = ox - ix dy = oy - iy d = dx * dx + dy * dy if d <= size ** 2: return False # collision return True # safe class Node(): """ RRT Node """ def __init__(self, x, y, yaw): self.x = x self.y = y self.yaw = yaw self.path_x = [] self.path_y = [] self.path_yaw = [] self.cost = 0.0 self.parent = None def main(): print("Start rrt start planning") # ====Search Path with RRT==== obstacleList = [ (5, 5, 1), (4, 6, 1), (4, 8, 1), (4, 10, 1), (6, 5, 1), (7, 5, 1), (8, 6, 1), (8, 8, 1), (8, 10, 1) ] # [x,y,size(radius)] # Set Initial parameters start = [0.0, 0.0, np.deg2rad(0.0)] goal = [6.0, 7.0, np.deg2rad(90.0)] rrt = RRT(start, goal, randArea=[-2.0, 20.0], obstacleList=obstacleList) flag, x, y, yaw, v, t, a, d = rrt.Planning(animation=show_animation) if not flag: print("cannot find feasible path") # flg, ax = plt.subplots(1) # Draw final path if show_animation: rrt.DrawGraph() plt.plot(x, y, '-r') plt.grid(True) plt.pause(0.001) flg, ax = plt.subplots(1) plt.plot(t, [np.rad2deg(iyaw) for iyaw in yaw[:-1]], '-r') plt.xlabel("time[s]") plt.ylabel("Yaw[deg]") plt.grid(True) flg, ax = plt.subplots(1) plt.plot(t, [iv * 3.6 for iv in v], '-r') plt.xlabel("time[s]") plt.ylabel("velocity[km/h]") plt.grid(True) flg, ax = plt.subplots(1) plt.plot(t, a, '-r') plt.xlabel("time[s]") plt.ylabel("accel[m/ss]") plt.grid(True) flg, ax = plt.subplots(1) plt.plot(t, [np.rad2deg(td) for td in d], '-r') plt.xlabel("time[s]") plt.ylabel("Steering angle[deg]") plt.grid(True) plt.show() if __name__ == '__main__': main()