""" Dubins path planner sample code author Atsushi Sakai(@Atsushi_twi) """ import math import numpy as np import matplotlib.pyplot as plt show_animation = True def mod2pi(theta): return theta - 2.0 * math.pi * math.floor(theta / 2.0 / math.pi) def pi_2_pi(angle): return (angle + math.pi) % (2*math.pi) - math.pi def LSL(alpha, beta, d): sa = math.sin(alpha) sb = math.sin(beta) ca = math.cos(alpha) cb = math.cos(beta) c_ab = math.cos(alpha - beta) tmp0 = d + sa - sb mode = ["L", "S", "L"] p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sa - sb)) if p_squared < 0: return None, None, None, mode tmp1 = math.atan2((cb - ca), tmp0) t = mod2pi(-alpha + tmp1) p = math.sqrt(p_squared) q = mod2pi(beta - tmp1) # print(math.degrees(t), p, math.degrees(q)) return t, p, q, mode def RSR(alpha, beta, d): sa = math.sin(alpha) sb = math.sin(beta) ca = math.cos(alpha) cb = math.cos(beta) c_ab = math.cos(alpha - beta) tmp0 = d - sa + sb mode = ["R", "S", "R"] p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sb - sa)) if p_squared < 0: return None, None, None, mode tmp1 = math.atan2((ca - cb), tmp0) t = mod2pi(alpha - tmp1) p = math.sqrt(p_squared) q = mod2pi(-beta + tmp1) return t, p, q, mode def LSR(alpha, beta, d): sa = math.sin(alpha) sb = math.sin(beta) ca = math.cos(alpha) cb = math.cos(beta) c_ab = math.cos(alpha - beta) p_squared = -2 + (d * d) + (2 * c_ab) + (2 * d * (sa + sb)) mode = ["L", "S", "R"] if p_squared < 0: return None, None, None, mode p = math.sqrt(p_squared) tmp2 = math.atan2((-ca - cb), (d + sa + sb)) - math.atan2(-2.0, p) t = mod2pi(-alpha + tmp2) q = mod2pi(-mod2pi(beta) + tmp2) return t, p, q, mode def RSL(alpha, beta, d): sa = math.sin(alpha) sb = math.sin(beta) ca = math.cos(alpha) cb = math.cos(beta) c_ab = math.cos(alpha - beta) p_squared = (d * d) - 2 + (2 * c_ab) - (2 * d * (sa + sb)) mode = ["R", "S", "L"] if p_squared < 0: return None, None, None, mode p = math.sqrt(p_squared) tmp2 = math.atan2((ca + cb), (d - sa - sb)) - math.atan2(2.0, p) t = mod2pi(alpha - tmp2) q = mod2pi(beta - tmp2) return t, p, q, mode def RLR(alpha, beta, d): sa = math.sin(alpha) sb = math.sin(beta) ca = math.cos(alpha) cb = math.cos(beta) c_ab = math.cos(alpha - beta) mode = ["R", "L", "R"] tmp_rlr = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (sa - sb)) / 8.0 if abs(tmp_rlr) > 1.0: return None, None, None, mode p = mod2pi(2 * math.pi - math.acos(tmp_rlr)) t = mod2pi(alpha - math.atan2(ca - cb, d - sa + sb) + mod2pi(p / 2.0)) q = mod2pi(alpha - beta - t + mod2pi(p)) return t, p, q, mode def LRL(alpha, beta, d): sa = math.sin(alpha) sb = math.sin(beta) ca = math.cos(alpha) cb = math.cos(beta) c_ab = math.cos(alpha - beta) mode = ["L", "R", "L"] tmp_lrl = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (- sa + sb)) / 8.0 if abs(tmp_lrl) > 1: return None, None, None, mode p = mod2pi(2 * math.pi - math.acos(tmp_lrl)) t = mod2pi(-alpha - math.atan2(ca - cb, d + sa - sb) + p / 2.0) q = mod2pi(mod2pi(beta) - alpha - t + mod2pi(p)) return t, p, q, mode def dubins_path_planning_from_origin(ex, ey, eyaw, c): # nomalize dx = ex dy = ey D = math.sqrt(dx ** 2.0 + dy ** 2.0) d = D * c # print(dx, dy, D, d) theta = mod2pi(math.atan2(dy, dx)) alpha = mod2pi(- theta) beta = mod2pi(eyaw - theta) # print(theta, alpha, beta, d) planners = [LSL, RSR, LSR, RSL, RLR, LRL] bcost = float("inf") bt, bp, bq, bmode = None, None, None, None for planner in planners: t, p, q, mode = planner(alpha, beta, d) if t is None: continue cost = (abs(t) + abs(p) + abs(q)) if bcost > cost: bt, bp, bq, bmode = t, p, q, mode bcost = cost # print(bmode) px, py, pyaw = generate_course([bt, bp, bq], bmode, c) return px, py, pyaw, bmode, bcost def dubins_path_planning(sx, sy, syaw, ex, ey, eyaw, c): """ Dubins path plannner input: sx x position of start point [m] sy y position of start point [m] syaw yaw angle of start point [rad] ex x position of end point [m] ey y position of end point [m] eyaw yaw angle of end point [rad] c curvature [1/m] output: px py pyaw mode """ ex = ex - sx ey = ey - sy lex = math.cos(syaw) * ex + math.sin(syaw) * ey ley = - math.sin(syaw) * ex + math.cos(syaw) * ey leyaw = eyaw - syaw lpx, lpy, lpyaw, mode, clen = dubins_path_planning_from_origin( lex, ley, leyaw, c) px = [math.cos(-syaw) * x + math.sin(-syaw) * y + sx for x, y in zip(lpx, lpy)] py = [- math.sin(-syaw) * x + math.cos(-syaw) * y + sy for x, y in zip(lpx, lpy)] pyaw = [pi_2_pi(iyaw + syaw) for iyaw in lpyaw] return px, py, pyaw, mode, clen def generate_course(length, mode, c): px = [0.0] py = [0.0] pyaw = [0.0] for m, l in zip(mode, length): pd = 0.0 if m is "S": d = 1.0 * c else: # turning couse d = math.radians(3.0) while pd < abs(l - d): # print(pd, l) px.append(px[-1] + d / c * math.cos(pyaw[-1])) py.append(py[-1] + d / c * math.sin(pyaw[-1])) if m is "L": # left turn pyaw.append(pyaw[-1] + d) elif m is "S": # Straight pyaw.append(pyaw[-1]) elif m is "R": # right turn pyaw.append(pyaw[-1] - d) pd += d else: d = l - pd px.append(px[-1] + d / c * math.cos(pyaw[-1])) py.append(py[-1] + d / c * math.sin(pyaw[-1])) if m is "L": # left turn pyaw.append(pyaw[-1] + d) elif m is "S": # Straight pyaw.append(pyaw[-1]) elif m is "R": # right turn pyaw.append(pyaw[-1] - d) pd += d return px, py, pyaw def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): """ Plot arrow """ if not isinstance(x, float): for (ix, iy, iyaw) in zip(x, y, yaw): plot_arrow(ix, iy, iyaw) else: plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc, ec=ec, head_width=width, head_length=width) plt.plot(x, y) def main(): print("Dubins path planner sample start!!") start_x = 1.0 # [m] start_y = 1.0 # [m] start_yaw = math.radians(45.0) # [rad] end_x = -3.0 # [m] end_y = -3.0 # [m] end_yaw = math.radians(-45.0) # [rad] curvature = 1.0 px, py, pyaw, mode, clen = dubins_path_planning(start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature) if show_animation: plt.plot(px, py, label="final course " + "".join(mode)) # plotting plot_arrow(start_x, start_y, start_yaw) plot_arrow(end_x, end_y, end_yaw) # for (ix, iy, iyaw) in zip(px, py, pyaw): # plot_arrow(ix, iy, iyaw, fc="b") plt.legend() plt.grid(True) plt.axis("equal") plt.show() def test(): NTEST = 5 for i in range(NTEST): start_x = (np.random.rand() - 0.5) * 10.0 # [m] start_y = (np.random.rand() - 0.5) * 10.0 # [m] start_yaw = math.radians((np.random.rand() - 0.5) * 180.0) # [rad] end_x = (np.random.rand() - 0.5) * 10.0 # [m] end_y = (np.random.rand() - 0.5) * 10.0 # [m] end_yaw = math.radians((np.random.rand() - 0.5) * 180.0) # [rad] curvature = 1.0 / (np.random.rand() * 5.0) px, py, pyaw, mode, clen = dubins_path_planning( start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature) if show_animation: plt.cla() plt.plot(px, py, label="final course " + str(mode)) # plotting plot_arrow(start_x, start_y, start_yaw) plot_arrow(end_x, end_y, end_yaw) plt.legend() plt.grid(True) plt.axis("equal") plt.xlim(-10, 10) plt.ylim(-10, 10) plt.pause(1.0) print("Test done") if __name__ == '__main__': test() main()