""" Path Planning Sample Code with RRT for car like robot. author: AtsushiSakai(@Atsushi_twi) """ import random import math import copy import numpy as np import dubins_path_planning import matplotlib.pyplot as plt show_animation = True class RRT(): """ Class for RRT Planning """ def __init__(self, start, goal, obstacleList, randArea, goalSampleRate=10, maxIter=1000): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Ramdom Samping Area [min,max] """ self.start = Node(start[0], start[1], start[2]) self.end = Node(goal[0], goal[1], goal[2]) self.minrand = randArea[0] self.maxrand = randArea[1] self.goalSampleRate = goalSampleRate self.maxIter = maxIter self.obstacleList = obstacleList def Planning(self, animation=False): """ Pathplanning animation: flag for animation on or off """ self.nodeList = [self.start] for i in range(self.maxIter): rnd = self.get_random_point() nind = self.GetNearestListIndex(self.nodeList, rnd) newNode = self.steer(rnd, nind) if self.__CollisionCheck(newNode, self.obstacleList): self.nodeList.append(newNode) if animation and i % 5 == 0: self.DrawGraph(rnd=rnd) # generate coruse lastIndex = self.get_best_last_index() # print(lastIndex) if lastIndex is None: return None path = self.gen_final_course(lastIndex) return path def choose_parent(self, newNode, nearinds): if len(nearinds) == 0: return newNode dlist = [] for i in nearinds: dx = newNode.x - self.nodeList[i].x dy = newNode.y - self.nodeList[i].y d = math.sqrt(dx ** 2 + dy ** 2) theta = math.atan2(dy, dx) if self.check_collision_extend(self.nodeList[i], theta, d): dlist.append(self.nodeList[i].cost + d) else: dlist.append(float("inf")) mincost = min(dlist) minind = nearinds[dlist.index(mincost)] if mincost == float("inf"): print("mincost is inf") return newNode newNode.cost = mincost newNode.parent = minind return newNode def pi_2_pi(self, angle): return (angle + math.pi) % (2*math.pi) - math.pi def steer(self, rnd, nind): # print(rnd) curvature = 1.0 nearestNode = self.nodeList[nind] px, py, pyaw, mode, clen = dubins_path_planning.dubins_path_planning( nearestNode.x, nearestNode.y, nearestNode.yaw, rnd[0], rnd[1], rnd[2], curvature) newNode = copy.deepcopy(nearestNode) newNode.x = px[-1] newNode.y = py[-1] newNode.yaw = pyaw[-1] newNode.path_x = px newNode.path_y = py newNode.path_yaw = pyaw newNode.cost += clen newNode.parent = nind return newNode def get_random_point(self): if random.randint(0, 100) > self.goalSampleRate: rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(self.minrand, self.maxrand), random.uniform(-math.pi, math.pi) ] else: # goal point sampling rnd = [self.end.x, self.end.y, self.end.yaw] return rnd def get_best_last_index(self): # print("get_best_last_index") disglist = [self.calc_dist_to_goal( node.x, node.y) for node in self.nodeList] goalinds = [disglist.index(i) for i in disglist if i <= 0.1] # print(goalinds) mincost = min([self.nodeList[i].cost for i in goalinds]) for i in goalinds: if self.nodeList[i].cost == mincost: return i return None def gen_final_course(self, goalind): path = [[self.end.x, self.end.y]] while self.nodeList[goalind].parent is not None: node = self.nodeList[goalind] for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)): path.append([ix, iy]) # path.append([node.x, node.y]) goalind = node.parent path.append([self.start.x, self.start.y]) return path def calc_dist_to_goal(self, x, y): return np.linalg.norm([x - self.end.x, y - self.end.y]) def DrawGraph(self, rnd=None): plt.clf() if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") for node in self.nodeList: if node.parent is not None: plt.plot(node.path_x, node.path_y, "-g") for (ox, oy, size) in self.obstacleList: plt.plot(ox, oy, "ok", ms=30 * size) dubins_path_planning.plot_arrow( self.start.x, self.start.y, self.start.yaw) dubins_path_planning.plot_arrow( self.end.x, self.end.y, self.end.yaw) plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01) def GetNearestListIndex(self, nodeList, rnd): dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 + (node.yaw - rnd[2] ** 2) for node in nodeList] minind = dlist.index(min(dlist)) return minind def __CollisionCheck(self, node, obstacleList): for (ox, oy, size) in obstacleList: for (ix, iy) in zip(node.path_x, node.path_y): dx = ox - ix dy = oy - iy d = dx * dx + dy * dy if d <= size ** 2: return False # collision return True # safe class Node(): """ RRT Node """ def __init__(self, x, y, yaw): self.x = x self.y = y self.yaw = yaw self.path_x = [] self.path_y = [] self.path_yaw = [] self.cost = 0.0 self.parent = None def main(): print("Start rrt planning") # ====Search Path with RRT==== obstacleList = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2) ] # [x,y,size(radius)] # Set Initial parameters start = [0.0, 0.0, math.radians(0.0)] goal = [10.0, 10.0, math.radians(0.0)] rrt = RRT(start, goal, randArea=[-2.0, 15.0], obstacleList=obstacleList) path = rrt.Planning(animation=show_animation) # Draw final path if show_animation: rrt.DrawGraph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.001) plt.show() if __name__ == '__main__': main()