""" Path Planning Sample Code with RRT and Dubins path author: AtsushiSakai(@Atsushi_twi) """ import random import math import copy import numpy as np import dubins_path_planning import matplotlib.pyplot as plt show_animation = True class RRT(): """ Class for RRT Planning """ def __init__(self, start, goal, obstacleList, randArea, goalSampleRate=10, maxIter=100): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Ramdom Samping Area [min,max] """ self.start = Node(start[0], start[1], start[2]) self.end = Node(goal[0], goal[1], goal[2]) self.minrand = randArea[0] self.maxrand = randArea[1] self.goalSampleRate = goalSampleRate self.maxIter = maxIter self.obstacleList = obstacleList def Planning(self, animation=True): """ Pathplanning animation: flag for animation on or off """ self.nodeList = [self.start] for i in range(self.maxIter): rnd = self.get_random_point() nind = self.GetNearestListIndex(self.nodeList, rnd) newNode = self.steer(rnd, nind) # print(newNode.cost) if self.CollisionCheck(newNode, self.obstacleList): nearinds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearinds) self.nodeList.append(newNode) self.rewire(newNode, nearinds) if animation and i % 5 == 0: self.DrawGraph(rnd=rnd) # generate coruse lastIndex = self.get_best_last_index() # print(lastIndex) if lastIndex is None: return None path = self.gen_final_course(lastIndex) return path def choose_parent(self, newNode, nearinds): if len(nearinds) == 0: return newNode dlist = [] for i in nearinds: tNode = self.steer(newNode, i) if self.CollisionCheck(tNode, self.obstacleList): dlist.append(tNode.cost) else: dlist.append(float("inf")) mincost = min(dlist) minind = nearinds[dlist.index(mincost)] if mincost == float("inf"): print("mincost is inf") return newNode newNode = self.steer(newNode, minind) return newNode def pi_2_pi(self, angle): return (angle + math.pi) % (2*math.pi) - math.pi def steer(self, rnd, nind): # print(rnd) curvature = 1.0 nearestNode = self.nodeList[nind] px, py, pyaw, mode, clen = dubins_path_planning.dubins_path_planning( nearestNode.x, nearestNode.y, nearestNode.yaw, rnd.x, rnd.y, rnd.yaw, curvature) newNode = copy.deepcopy(nearestNode) newNode.x = px[-1] newNode.y = py[-1] newNode.yaw = pyaw[-1] newNode.path_x = px newNode.path_y = py newNode.path_yaw = pyaw newNode.cost += clen newNode.parent = nind return newNode def get_random_point(self): if random.randint(0, 100) > self.goalSampleRate: rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(self.minrand, self.maxrand), random.uniform(-math.pi, math.pi) ] else: # goal point sampling rnd = [self.end.x, self.end.y, self.end.yaw] node = Node(rnd[0], rnd[1], rnd[2]) return node def get_best_last_index(self): # print("get_best_last_index") YAWTH = math.radians(1.0) XYTH = 0.5 goalinds = [] for (i, node) in enumerate(self.nodeList): if self.calc_dist_to_goal(node.x, node.y) <= XYTH: goalinds.append(i) # angle check fgoalinds = [] for i in goalinds: if abs(self.nodeList[i].yaw - self.end.yaw) <= YAWTH: fgoalinds.append(i) if len(fgoalinds) == 0: return None mincost = min([self.nodeList[i].cost for i in fgoalinds]) for i in fgoalinds: if self.nodeList[i].cost == mincost: return i return None def gen_final_course(self, goalind): path = [[self.end.x, self.end.y]] while self.nodeList[goalind].parent is not None: node = self.nodeList[goalind] for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)): path.append([ix, iy]) # path.append([node.x, node.y]) goalind = node.parent path.append([self.start.x, self.start.y]) return path def calc_dist_to_goal(self, x, y): return np.linalg.norm([x - self.end.x, y - self.end.y]) def find_near_nodes(self, newNode): nnode = len(self.nodeList) r = 50.0 * math.sqrt((math.log(nnode) / nnode)) # r = self.expandDis * 5.0 dlist = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 + (node.yaw - newNode.yaw) ** 2 for node in self.nodeList] nearinds = [dlist.index(i) for i in dlist if i <= r ** 2] return nearinds def rewire(self, newNode, nearinds): nnode = len(self.nodeList) for i in nearinds: nearNode = self.nodeList[i] tNode = self.steer(nearNode, nnode - 1) obstacleOK = self.CollisionCheck(tNode, self.obstacleList) imporveCost = nearNode.cost > tNode.cost if obstacleOK and imporveCost: # print("rewire") self.nodeList[i] = tNode def DrawGraph(self, rnd=None): u""" Draw Graph """ plt.clf() if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") for node in self.nodeList: if node.parent is not None: plt.plot(node.path_x, node.path_y, "-g") # plt.plot([node.x, self.nodeList[node.parent].x], [ # node.y, self.nodeList[node.parent].y], "-g") for (ox, oy, size) in self.obstacleList: plt.plot(ox, oy, "ok", ms=30 * size) dubins_path_planning.plot_arrow( self.start.x, self.start.y, self.start.yaw) dubins_path_planning.plot_arrow( self.end.x, self.end.y, self.end.yaw) plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01) # plt.show() # input() def GetNearestListIndex(self, nodeList, rnd): dlist = [(node.x - rnd.x) ** 2 + (node.y - rnd.y) ** 2 + (node.yaw - rnd.yaw) ** 2 for node in nodeList] minind = dlist.index(min(dlist)) return minind def CollisionCheck(self, node, obstacleList): for (ox, oy, size) in obstacleList: for (ix, iy) in zip(node.path_x, node.path_y): dx = ox - ix dy = oy - iy d = dx * dx + dy * dy if d <= size ** 2: return False # collision return True # safe class Node(): """ RRT Node """ def __init__(self, x, y, yaw): self.x = x self.y = y self.yaw = yaw self.path_x = [] self.path_y = [] self.path_yaw = [] self.cost = 0.0 self.parent = None def main(): print("Start rrt star with dubins planning") # ====Search Path with RRT==== obstacleList = [ (5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), (9, 5, 2) ] # [x,y,size(radius)] # Set Initial parameters start = [0.0, 0.0, math.radians(0.0)] goal = [10.0, 10.0, math.radians(0.0)] rrt = RRT(start, goal, randArea=[-2.0, 15.0], obstacleList=obstacleList) path = rrt.Planning(animation=show_animation) # Draw final path if show_animation: rrt.DrawGraph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.001) plt.show() if __name__ == '__main__': main()