""" A* grid based planning author: Nikos Kanargias (nkana@tee.gr) See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm) """ import math import heapq import matplotlib.pyplot as plt show_animation = False class Node: def __init__(self, x, y, cost, pind): self.x = x self.y = y self.cost = cost self.pind = pind def __str__(self): return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind) def calc_final_path(ngoal, closedset, reso): # generate final course rx, ry = [ngoal.x * reso], [ngoal.y * reso] pind = ngoal.pind while pind != -1: n = closedset[pind] rx.append(n.x * reso) ry.append(n.y * reso) pind = n.pind return rx, ry def dp_planning(sx, sy, gx, gy, ox, oy, reso, rr): """ gx: goal x position [m] gx: goal x position [m] ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] reso: grid resolution [m] rr: robot radius[m] """ nstart = Node(round(sx / reso), round(sy / reso), 0.0, -1) ngoal = Node(round(gx / reso), round(gy / reso), 0.0, -1) ox = [iox / reso for iox in ox] oy = [ioy / reso for ioy in oy] obmap, minx, miny, maxx, maxy, xw, yw = calc_obstacle_map(ox, oy, reso, rr) motion = get_motion_model() openset, closedset = dict(), dict() openset[calc_index(ngoal, xw, minx, miny)] = ngoal pq = [] pq.append((0, calc_index(ngoal, xw, minx, miny))) while 1: if not pq: break cost, c_id = heapq.heappop(pq) if c_id in openset: current = openset[c_id] closedset[c_id] = current openset.pop(c_id) else: continue # show graph if show_animation: # pragma: no cover plt.plot(current.x * reso, current.y * reso, "xc") plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closedset.keys()) % 10 == 0: plt.pause(0.001) # Remove the item from the open set # expand search grid based on motion model for i, _ in enumerate(motion): node = Node(current.x + motion[i][0], current.y + motion[i][1], current.cost + motion[i][2], c_id) n_id = calc_index(node, xw, minx, miny) if n_id in closedset: continue if not verify_node(node, obmap, minx, miny, maxx, maxy): continue if n_id not in openset: openset[n_id] = node # Discover a new node heapq.heappush( pq, (node.cost, calc_index(node, xw, minx, miny))) else: if openset[n_id].cost >= node.cost: # This path is the best until now. record it! openset[n_id] = node heapq.heappush( pq, (node.cost, calc_index(node, xw, minx, miny))) rx, ry = calc_final_path(closedset[calc_index( nstart, xw, minx, miny)], closedset, reso) return rx, ry, closedset def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.sqrt((n1.x - n2.x)**2 + (n1.y - n2.y)**2) return d def verify_node(node, obmap, minx, miny, maxx, maxy): if node.x < minx: return False elif node.y < miny: return False elif node.x >= maxx: return False elif node.y >= maxy: return False if obmap[node.x][node.y]: return False return True def calc_obstacle_map(ox, oy, reso, vr): minx = round(min(ox)) miny = round(min(oy)) maxx = round(max(ox)) maxy = round(max(oy)) xwidth = round(maxx - minx) ywidth = round(maxy - miny) # obstacle map generation obmap = [[False for i in range(ywidth)] for i in range(xwidth)] for ix in range(xwidth): x = ix + minx for iy in range(ywidth): y = iy + miny # print(x, y) for iox, ioy in zip(ox, oy): d = math.sqrt((iox - x)**2 + (ioy - y)**2) if d <= vr / reso: obmap[ix][iy] = True break return obmap, minx, miny, maxx, maxy, xwidth, ywidth def calc_index(node, xwidth, xmin, ymin): return (node.y - ymin) * xwidth + (node.x - xmin) def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_size = 1.0 # [m] ox, oy = [], [] for i in range(60): ox.append(i) oy.append(0.0) for i in range(60): ox.append(60.0) oy.append(i) for i in range(61): ox.append(i) oy.append(60.0) for i in range(61): ox.append(0.0) oy.append(i) for i in range(40): ox.append(20.0) oy.append(i) for i in range(40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "xr") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") rx, ry, _ = dp_planning(sx, sy, gx, gy, ox, oy, grid_size, robot_size) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.show() if __name__ == '__main__': show_animation = True main()