import conftest import numpy as np from PathPlanning.DynamicMovementPrimitives import \ dynamic_movement_primitives def test_1(): # test that trajectory can be learned from user-passed data T = 5 t = np.arange(0, T, 0.01) sin_t = np.sin(t) train_data = np.array([t, sin_t]).T DMP_controller = dynamic_movement_primitives.DMP(train_data, T) DMP_controller.recreate_trajectory(train_data[0], train_data[-1], 4) def test_2(): # test that length of trajectory is equal to desired number of timesteps T = 5 t = np.arange(0, T, 0.01) sin_t = np.sin(t) train_data = np.array([t, sin_t]).T DMP_controller = dynamic_movement_primitives.DMP(train_data, T) t, path = DMP_controller.recreate_trajectory(train_data[0], train_data[-1], 4) assert(path.shape[0] == DMP_controller.timesteps) def test_3(): # check that learned trajectory is close to initial T = 3*np.pi/2 A_noise = 0.02 t = np.arange(0, T, 0.01) noisy_sin_t = np.sin(t) + A_noise*np.random.rand(len(t)) train_data = np.array([t, noisy_sin_t]).T DMP_controller = dynamic_movement_primitives.DMP(train_data, T) t, pos = DMP_controller.recreate_trajectory(train_data[0], train_data[-1], T) diff = abs(pos[:, 1] - noisy_sin_t) assert(max(diff) < 5*A_noise) if __name__ == '__main__': conftest.run_this_test(__file__)