/********************************************************************* * Software License Agreement (BSD License) * * Copyright (c) 2010, Rice University * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Rice University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *********************************************************************/ /* Author: Mark Moll */ #include "ompl/base/spaces/ReedsSheppStateSpace.h" #include "ompl/base/SpaceInformation.h" #include "ompl/util/Exception.h" #include #include using namespace ompl::base; namespace { // The comments, variable names, etc. use the nomenclature from the Reeds & Shepp paper. const double pi = boost::math::constants::pi(); const double twopi = 2. * pi; const double RS_EPS = 1e-6; const double ZERO = 10 * std::numeric_limits::epsilon(); inline double mod2pi(double x) { double v = fmod(x, twopi); if (v < -pi) v += twopi; else if (v > pi) v -= twopi; return v; } inline void polar(double x, double y, double &r, double &theta) { r = sqrt(x * x + y * y); theta = atan2(y, x); } inline void tauOmega(double u, double v, double xi, double eta, double phi, double &tau, double &omega) { double delta = mod2pi(u - v), A = sin(u) - sin(delta), B = cos(u) - cos(delta) - 1.; double t1 = atan2(eta * A - xi * B, xi * A + eta * B), t2 = 2. * (cos(delta) - cos(v) - cos(u)) + 3; tau = (t2 < 0) ? mod2pi(t1 + pi) : mod2pi(t1); omega = mod2pi(tau - u + v - phi); } // formula 8.1 in Reeds-Shepp paper inline bool LpSpLp(double x, double y, double phi, double &t, double &u, double &v) { polar(x - sin(phi), y - 1. + cos(phi), u, t); if (t >= -ZERO) { v = mod2pi(phi - t); if (v >= -ZERO) { assert(fabs(u * cos(t) + sin(phi) - x) < RS_EPS); assert(fabs(u * sin(t) - cos(phi) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t + v - phi)) < RS_EPS); return true; } } return false; } // formula 8.2 inline bool LpSpRp(double x, double y, double phi, double &t, double &u, double &v) { double t1, u1; polar(x + sin(phi), y - 1. - cos(phi), u1, t1); u1 = u1 * u1; if (u1 >= 4.) { double theta; u = sqrt(u1 - 4.); theta = atan2(2., u); t = mod2pi(t1 + theta); v = mod2pi(t - phi); assert(fabs(2 * sin(t) + u * cos(t) - sin(phi) - x) < RS_EPS); assert(fabs(-2 * cos(t) + u * sin(t) + cos(phi) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t - v - phi)) < RS_EPS); return t >= -ZERO && v >= -ZERO; } return false; } void CSC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path) { double t, u, v, Lmin = path.length(), L; if (LpSpLp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[14], t, u, v); Lmin = L; } if (LpSpLp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[14], -t, -u, -v); Lmin = L; } if (LpSpLp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[15], t, u, v); Lmin = L; } if (LpSpLp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[15], -t, -u, -v); Lmin = L; } if (LpSpRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[12], t, u, v); Lmin = L; } if (LpSpRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[12], -t, -u, -v); Lmin = L; } if (LpSpRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[13], t, u, v); Lmin = L; } if (LpSpRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[13], -t, -u, -v); } // formula 8.3 / 8.4 *** TYPO IN PAPER *** inline bool LpRmL(double x, double y, double phi, double &t, double &u, double &v) { double xi = x - sin(phi), eta = y - 1. + cos(phi), u1, theta; polar(xi, eta, u1, theta); if (u1 <= 4.) { u = -2. * asin(.25 * u1); t = mod2pi(theta + .5 * u + pi); v = mod2pi(phi - t + u); assert(fabs(2 * (sin(t) - sin(t - u)) + sin(phi) - x) < RS_EPS); assert(fabs(2 * (-cos(t) + cos(t - u)) - cos(phi) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t - u + v - phi)) < RS_EPS); return t >= -ZERO && u <= ZERO; } return false; } void CCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path) { double t, u, v, Lmin = path.length(), L; if (LpRmL(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], t, u, v); Lmin = L; } if (LpRmL(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], -t, -u, -v); Lmin = L; } if (LpRmL(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], t, u, v); Lmin = L; } if (LpRmL(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], -t, -u, -v); Lmin = L; } // backwards double xb = x * cos(phi) + y * sin(phi), yb = x * sin(phi) - y * cos(phi); if (LpRmL(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], v, u, t); Lmin = L; } if (LpRmL(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], -v, -u, -t); Lmin = L; } if (LpRmL(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], v, u, t); Lmin = L; } if (LpRmL(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], -v, -u, -t); } // formula 8.7 inline bool LpRupLumRm(double x, double y, double phi, double &t, double &u, double &v) { double xi = x + sin(phi), eta = y - 1. - cos(phi), rho = .25 * (2. + sqrt(xi * xi + eta * eta)); if (rho <= 1.) { u = acos(rho); tauOmega(u, -u, xi, eta, phi, t, v); assert(fabs(2 * (sin(t) - sin(t - u) + sin(t - 2 * u)) - sin(phi) - x) < RS_EPS); assert(fabs(2 * (-cos(t) + cos(t - u) - cos(t - 2 * u)) + cos(phi) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t - 2 * u - v - phi)) < RS_EPS); return t >= -ZERO && v <= ZERO; } return false; } // formula 8.8 inline bool LpRumLumRp(double x, double y, double phi, double &t, double &u, double &v) { double xi = x + sin(phi), eta = y - 1. - cos(phi), rho = (20. - xi * xi - eta * eta) / 16.; if (rho >= 0 && rho <= 1) { u = -acos(rho); if (u >= -.5 * pi) { tauOmega(u, u, xi, eta, phi, t, v); assert(fabs(4 * sin(t) - 2 * sin(t - u) - sin(phi) - x) < RS_EPS); assert(fabs(-4 * cos(t) + 2 * cos(t - u) + cos(phi) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t - v - phi)) < RS_EPS); return t >= -ZERO && v >= -ZERO; } } return false; } void CCCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path) { double t, u, v, Lmin = path.length(), L; if (LpRupLumRm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], t, u, -u, v); Lmin = L; } if (LpRupLumRm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], -t, -u, u, -v); Lmin = L; } if (LpRupLumRm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], t, u, -u, v); Lmin = L; } if (LpRupLumRm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip + reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], -t, -u, u, -v); Lmin = L; } if (LpRumLumRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], t, u, u, v); Lmin = L; } if (LpRumLumRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], -t, -u, -u, -v); Lmin = L; } if (LpRumLumRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], t, u, u, v); Lmin = L; } if (LpRumLumRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip + reflect path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], -t, -u, -u, -v); } // formula 8.9 inline bool LpRmSmLm(double x, double y, double phi, double &t, double &u, double &v) { double xi = x - sin(phi), eta = y - 1. + cos(phi), rho, theta; polar(xi, eta, rho, theta); if (rho >= 2.) { double r = sqrt(rho * rho - 4.); u = 2. - r; t = mod2pi(theta + atan2(r, -2.)); v = mod2pi(phi - .5 * pi - t); assert(fabs(2 * (sin(t) - cos(t)) - u * sin(t) + sin(phi) - x) < RS_EPS); assert(fabs(-2 * (sin(t) + cos(t)) + u * cos(t) - cos(phi) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t + pi / 2 + v - phi)) < RS_EPS); return t >= -ZERO && u <= ZERO && v <= ZERO; } return false; } // formula 8.10 inline bool LpRmSmRm(double x, double y, double phi, double &t, double &u, double &v) { double xi = x + sin(phi), eta = y - 1. - cos(phi), rho, theta; polar(-eta, xi, rho, theta); if (rho >= 2.) { t = theta; u = 2. - rho; v = mod2pi(t + .5 * pi - phi); assert(fabs(2 * sin(t) - cos(t - v) - u * sin(t) - x) < RS_EPS); assert(fabs(-2 * cos(t) - sin(t - v) + u * cos(t) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t + pi / 2 - v - phi)) < RS_EPS); return t >= -ZERO && u <= ZERO && v <= ZERO; } return false; } void CCSC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path) { double t, u, v, Lmin = path.length() - .5 * pi, L; if (LpRmSmLm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[4], t, -.5 * pi, u, v); Lmin = L; } if (LpRmSmLm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[4], -t, .5 * pi, -u, -v); Lmin = L; } if (LpRmSmLm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[5], t, -.5 * pi, u, v); Lmin = L; } if (LpRmSmLm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[5], -t, .5 * pi, -u, -v); Lmin = L; } if (LpRmSmRm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[8], t, -.5 * pi, u, v); Lmin = L; } if (LpRmSmRm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[8], -t, .5 * pi, -u, -v); Lmin = L; } if (LpRmSmRm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[9], t, -.5 * pi, u, v); Lmin = L; } if (LpRmSmRm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[9], -t, .5 * pi, -u, -v); Lmin = L; } // backwards double xb = x * cos(phi) + y * sin(phi), yb = x * sin(phi) - y * cos(phi); if (LpRmSmLm(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[6], v, u, -.5 * pi, t); Lmin = L; } if (LpRmSmLm(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[6], -v, -u, .5 * pi, -t); Lmin = L; } if (LpRmSmLm(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[7], v, u, -.5 * pi, t); Lmin = L; } if (LpRmSmLm(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[7], -v, -u, .5 * pi, -t); Lmin = L; } if (LpRmSmRm(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[10], v, u, -.5 * pi, t); Lmin = L; } if (LpRmSmRm(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[10], -v, -u, .5 * pi, -t); Lmin = L; } if (LpRmSmRm(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[11], v, u, -.5 * pi, t); Lmin = L; } if (LpRmSmRm(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[11], -v, -u, .5 * pi, -t); } // formula 8.11 *** TYPO IN PAPER *** inline bool LpRmSLmRp(double x, double y, double phi, double &t, double &u, double &v) { double xi = x + sin(phi), eta = y - 1. - cos(phi), rho, theta; polar(xi, eta, rho, theta); if (rho >= 2.) { u = 4. - sqrt(rho * rho - 4.); if (u <= ZERO) { t = mod2pi(atan2((4 - u) * xi - 2 * eta, -2 * xi + (u - 4) * eta)); v = mod2pi(t - phi); assert(fabs(4 * sin(t) - 2 * cos(t) - u * sin(t) - sin(phi) - x) < RS_EPS); assert(fabs(-4 * cos(t) - 2 * sin(t) + u * cos(t) + cos(phi) + 1 - y) < RS_EPS); assert(fabs(mod2pi(t - v - phi)) < RS_EPS); return t >= -ZERO && v >= -ZERO; } } return false; } void CCSCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path) { double t, u, v, Lmin = path.length() - pi, L; if (LpRmSLmRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[16], t, -.5 * pi, u, -.5 * pi, v); Lmin = L; } if (LpRmSLmRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[16], -t, .5 * pi, -u, .5 * pi, -v); Lmin = L; } if (LpRmSLmRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect { path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[17], t, -.5 * pi, u, -.5 * pi, v); Lmin = L; } if (LpRmSLmRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[17], -t, .5 * pi, -u, .5 * pi, -v); } ReedsSheppStateSpace::ReedsSheppPath reedsShepp(double x, double y, double phi) { ReedsSheppStateSpace::ReedsSheppPath path; CSC(x, y, phi, path); CCC(x, y, phi, path); CCCC(x, y, phi, path); CCSC(x, y, phi, path); CCSCC(x, y, phi, path); return path; } } const ompl::base::ReedsSheppStateSpace::ReedsSheppPathSegmentType ompl::base::ReedsSheppStateSpace::reedsSheppPathType[18][5] = { {RS_LEFT, RS_RIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 0 {RS_RIGHT, RS_LEFT, RS_RIGHT, RS_NOP, RS_NOP}, // 1 {RS_LEFT, RS_RIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 2 {RS_RIGHT, RS_LEFT, RS_RIGHT, RS_LEFT, RS_NOP}, // 3 {RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_NOP}, // 4 {RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_NOP}, // 5 {RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_LEFT, RS_NOP}, // 6 {RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 7 {RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_NOP}, // 8 {RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_NOP}, // 9 {RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_LEFT, RS_NOP}, // 10 {RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 11 {RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_NOP, RS_NOP}, // 12 {RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 13 {RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 14 {RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_NOP, RS_NOP}, // 15 {RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_RIGHT}, // 16 {RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_LEFT} // 17 }; ompl::base::ReedsSheppStateSpace::ReedsSheppPath::ReedsSheppPath(const ReedsSheppPathSegmentType *type, double t, double u, double v, double w, double x) : type_(type) { length_[0] = t; length_[1] = u; length_[2] = v; length_[3] = w; length_[4] = x; totalLength_ = fabs(t) + fabs(u) + fabs(v) + fabs(w) + fabs(x); } double ompl::base::ReedsSheppStateSpace::distance(const State *state1, const State *state2) const { return rho_ * reedsShepp(state1, state2).length(); } void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const State *to, const double t, State *state) const { bool firstTime = true; ReedsSheppPath path; interpolate(from, to, t, firstTime, path, state); } void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const State *to, const double t, bool &firstTime, ReedsSheppPath &path, State *state) const { if (firstTime) { if (t >= 1.) { if (to != state) copyState(state, to); return; } if (t <= 0.) { if (from != state) copyState(state, from); return; } path = reedsShepp(from, to); firstTime = false; } interpolate(from, path, t, state); } void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const ReedsSheppPath &path, double t, State *state) const { auto *s = allocState()->as(); double seg = t * path.length(), phi, v; s->setXY(0., 0.); s->setYaw(from->as()->getYaw()); for (unsigned int i = 0; i < 5 && seg > 0; ++i) { if (path.length_[i] < 0) { v = std::max(-seg, path.length_[i]); seg += v; } else { v = std::min(seg, path.length_[i]); seg -= v; } phi = s->getYaw(); switch (path.type_[i]) { case RS_LEFT: s->setXY(s->getX() + sin(phi + v) - sin(phi), s->getY() - cos(phi + v) + cos(phi)); s->setYaw(phi + v); break; case RS_RIGHT: s->setXY(s->getX() - sin(phi - v) + sin(phi), s->getY() + cos(phi - v) - cos(phi)); s->setYaw(phi - v); break; case RS_STRAIGHT: s->setXY(s->getX() + v * cos(phi), s->getY() + v * sin(phi)); break; case RS_NOP: break; } } state->as()->setX(s->getX() * rho_ + from->as()->getX()); state->as()->setY(s->getY() * rho_ + from->as()->getY()); getSubspace(1)->enforceBounds(s->as(1)); state->as()->setYaw(s->getYaw()); freeState(s); } ompl::base::ReedsSheppStateSpace::ReedsSheppPath ompl::base::ReedsSheppStateSpace::reedsShepp(const State *state1, const State *state2) const { const auto *s1 = static_cast(state1); const auto *s2 = static_cast(state2); double x1 = s1->getX(), y1 = s1->getY(), th1 = s1->getYaw(); double x2 = s2->getX(), y2 = s2->getY(), th2 = s2->getYaw(); double dx = x2 - x1, dy = y2 - y1, c = cos(th1), s = sin(th1); double x = c * dx + s * dy, y = -s * dx + c * dy, phi = th2 - th1; return ::reedsShepp(x / rho_, y / rho_, phi); } void ompl::base::ReedsSheppMotionValidator::defaultSettings() { stateSpace_ = dynamic_cast(si_->getStateSpace().get()); if (stateSpace_ == nullptr) throw Exception("No state space for motion validator"); } bool ompl::base::ReedsSheppMotionValidator::checkMotion(const State *s1, const State *s2, std::pair &lastValid) const { /* assume motion starts in a valid configuration so s1 is valid */ bool result = true, firstTime = true; ReedsSheppStateSpace::ReedsSheppPath path; int nd = stateSpace_->validSegmentCount(s1, s2); if (nd > 1) { /* temporary storage for the checked state */ State *test = si_->allocState(); for (int j = 1; j < nd; ++j) { stateSpace_->interpolate(s1, s2, (double)j / (double)nd, firstTime, path, test); if (!si_->isValid(test)) { lastValid.second = (double)(j - 1) / (double)nd; if (lastValid.first != nullptr) stateSpace_->interpolate(s1, s2, lastValid.second, firstTime, path, lastValid.first); result = false; break; } } si_->freeState(test); } if (result) if (!si_->isValid(s2)) { lastValid.second = (double)(nd - 1) / (double)nd; if (lastValid.first != nullptr) stateSpace_->interpolate(s1, s2, lastValid.second, firstTime, path, lastValid.first); result = false; } if (result) valid_++; else invalid_++; return result; } bool ompl::base::ReedsSheppMotionValidator::checkMotion(const State *s1, const State *s2) const { /* assume motion starts in a valid configuration so s1 is valid */ if (!si_->isValid(s2)) return false; bool result = true, firstTime = true; ReedsSheppStateSpace::ReedsSheppPath path; int nd = stateSpace_->validSegmentCount(s1, s2); /* initialize the queue of test positions */ std::queue> pos; if (nd >= 2) { pos.push(std::make_pair(1, nd - 1)); /* temporary storage for the checked state */ State *test = si_->allocState(); /* repeatedly subdivide the path segment in the middle (and check the middle) */ while (!pos.empty()) { std::pair x = pos.front(); int mid = (x.first + x.second) / 2; stateSpace_->interpolate(s1, s2, (double)mid / (double)nd, firstTime, path, test); if (!si_->isValid(test)) { result = false; break; } pos.pop(); if (x.first < mid) pos.push(std::make_pair(x.first, mid - 1)); if (x.second > mid) pos.push(std::make_pair(mid + 1, x.second)); } si_->freeState(test); } if (result) valid_++; else invalid_++; return result; }