Files
PythonRobotics/Mapping/DistanceMap/distance_map.py
Aglargil c92aaf36d8 feat: add ElasticBands (#1156)
* feat: add ElasticBands

* feat: Elastic Bands update

* feat: ElasticBands update

* feat: ElasticBands add test

* feat: ElasticBands reduce occupation

* fix: ElasticBands test

* feat: ElasticBands remove tangential component

* feat: Elastic Bands update

* feat: Elastic Bands doc

* feat: Elastic Bands update

* feat: ElasticBands update
2025-02-17 19:47:04 +09:00

203 lines
5.3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
Distance Map
author: Wang Zheng (@Aglargil)
Ref:
- [Distance Map]
(https://cs.brown.edu/people/pfelzens/papers/dt-final.pdf)
"""
import numpy as np
import matplotlib.pyplot as plt
import scipy
INF = 1e20
ENABLE_PLOT = True
def compute_sdf_scipy(obstacles):
"""
Compute the signed distance field (SDF) from a boolean field using scipy.
This function has the same functionality as compute_sdf.
However, by using scipy.ndimage.distance_transform_edt, it can compute much faster.
Example: 500×500 map
• compute_sdf: 3 sec
• compute_sdf_scipy: 0.05 sec
Parameters
----------
obstacles : array_like
A 2D boolean array where '1' represents obstacles and '0' represents free space.
Returns
-------
array_like
A 2D array representing the signed distance field, where positive values indicate distance
to the nearest obstacle, and negative values indicate distance to the nearest free space.
"""
# distance_transform_edt use '0' as obstacles, so we need to convert the obstacles to '0'
a = scipy.ndimage.distance_transform_edt(obstacles == 0)
b = scipy.ndimage.distance_transform_edt(obstacles == 1)
return a - b
def compute_udf_scipy(obstacles):
"""
Compute the unsigned distance field (UDF) from a boolean field using scipy.
This function has the same functionality as compute_udf.
However, by using scipy.ndimage.distance_transform_edt, it can compute much faster.
Example: 500×500 map
• compute_udf: 1.5 sec
• compute_udf_scipy: 0.02 sec
Parameters
----------
obstacles : array_like
A 2D boolean array where '1' represents obstacles and '0' represents free space.
Returns
-------
array_like
A 2D array of distances from the nearest obstacle, with the same dimensions as `bool_field`.
"""
return scipy.ndimage.distance_transform_edt(obstacles == 0)
def compute_sdf(obstacles):
"""
Compute the signed distance field (SDF) from a boolean field.
Parameters
----------
obstacles : array_like
A 2D boolean array where '1' represents obstacles and '0' represents free space.
Returns
-------
array_like
A 2D array representing the signed distance field, where positive values indicate distance
to the nearest obstacle, and negative values indicate distance to the nearest free space.
"""
a = compute_udf(obstacles)
b = compute_udf(obstacles == 0)
return a - b
def compute_udf(obstacles):
"""
Compute the unsigned distance field (UDF) from a boolean field.
Parameters
----------
obstacles : array_like
A 2D boolean array where '1' represents obstacles and '0' represents free space.
Returns
-------
array_like
A 2D array of distances from the nearest obstacle, with the same dimensions as `bool_field`.
"""
edt = obstacles.copy()
if not np.all(np.isin(edt, [0, 1])):
raise ValueError("Input array should only contain 0 and 1")
edt = np.where(edt == 0, INF, edt)
edt = np.where(edt == 1, 0, edt)
for row in range(len(edt)):
dt(edt[row])
edt = edt.T
for row in range(len(edt)):
dt(edt[row])
edt = edt.T
return np.sqrt(edt)
def dt(d):
"""
Compute 1D distance transform under the squared Euclidean distance
Parameters
----------
d : array_like
Input array containing the distances.
Returns:
--------
d : array_like
The transformed array with computed distances.
"""
v = np.zeros(len(d) + 1)
z = np.zeros(len(d) + 1)
k = 0
v[0] = 0
z[0] = -INF
z[1] = INF
for q in range(1, len(d)):
s = ((d[q] + q * q) - (d[int(v[k])] + v[k] * v[k])) / (2 * q - 2 * v[k])
while s <= z[k]:
k = k - 1
s = ((d[q] + q * q) - (d[int(v[k])] + v[k] * v[k])) / (2 * q - 2 * v[k])
k = k + 1
v[k] = q
z[k] = s
z[k + 1] = INF
k = 0
for q in range(len(d)):
while z[k + 1] < q:
k = k + 1
dx = q - v[k]
d[q] = dx * dx + d[int(v[k])]
def main():
obstacles = np.array(
[
[1, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
]
)
# Compute the signed distance field
sdf = compute_sdf(obstacles)
udf = compute_udf(obstacles)
if ENABLE_PLOT:
_, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
obstacles_plot = ax1.imshow(obstacles, cmap="binary")
ax1.set_title("Obstacles")
ax1.set_xlabel("x")
ax1.set_ylabel("y")
plt.colorbar(obstacles_plot, ax=ax1)
udf_plot = ax2.imshow(udf, cmap="viridis")
ax2.set_title("Unsigned Distance Field")
ax2.set_xlabel("x")
ax2.set_ylabel("y")
plt.colorbar(udf_plot, ax=ax2)
sdf_plot = ax3.imshow(sdf, cmap="RdBu")
ax3.set_title("Signed Distance Field")
ax3.set_xlabel("x")
ax3.set_ylabel("y")
plt.colorbar(sdf_plot, ax=ax3)
plt.tight_layout()
plt.show()
if __name__ == "__main__":
main()