Files
PythonRobotics/SLAM/FastSLAM1/fast_slam1.py
Atsushi Sakai 16c16b6ff5 clean up fast slam codes (#1012)
* clean up fast slam codes

* clean up fast slam codes

* clean up fast slam codes
2024-05-04 23:08:14 +09:00

395 lines
10 KiB
Python

"""
FastSLAM 1.0 example
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from utils.angle import angle_mod
# Fast SLAM covariance
Q = np.diag([3.0, np.deg2rad(10.0)]) ** 2
R = np.diag([1.0, np.deg2rad(20.0)]) ** 2
# Simulation parameter
Q_SIM = np.diag([0.3, np.deg2rad(2.0)]) ** 2
R_SIM = np.diag([0.5, np.deg2rad(10.0)]) ** 2
OFFSET_YAW_RATE_NOISE = 0.01
DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
STATE_SIZE = 3 # State size [x,y,yaw]
LM_SIZE = 2 # LM state size [x,y]
N_PARTICLE = 100 # number of particle
NTH = N_PARTICLE / 1.5 # Number of particle for re-sampling
show_animation = True
class Particle:
def __init__(self, n_landmark):
self.w = 1.0 / N_PARTICLE
self.x = 0.0
self.y = 0.0
self.yaw = 0.0
# landmark x-y positions
self.lm = np.zeros((n_landmark, LM_SIZE))
# landmark position covariance
self.lmP = np.zeros((n_landmark * LM_SIZE, LM_SIZE))
def fast_slam1(particles, u, z):
particles = predict_particles(particles, u)
particles = update_with_observation(particles, z)
particles = resampling(particles)
return particles
def normalize_weight(particles):
sum_w = sum([p.w for p in particles])
try:
for i in range(N_PARTICLE):
particles[i].w /= sum_w
except ZeroDivisionError:
for i in range(N_PARTICLE):
particles[i].w = 1.0 / N_PARTICLE
return particles
return particles
def calc_final_state(particles):
x_est = np.zeros((STATE_SIZE, 1))
particles = normalize_weight(particles)
for i in range(N_PARTICLE):
x_est[0, 0] += particles[i].w * particles[i].x
x_est[1, 0] += particles[i].w * particles[i].y
x_est[2, 0] += particles[i].w * particles[i].yaw
x_est[2, 0] = pi_2_pi(x_est[2, 0])
return x_est
def predict_particles(particles, u):
for i in range(N_PARTICLE):
px = np.zeros((STATE_SIZE, 1))
px[0, 0] = particles[i].x
px[1, 0] = particles[i].y
px[2, 0] = particles[i].yaw
ud = u + (np.random.randn(1, 2) @ R ** 0.5).T # add noise
px = motion_model(px, ud)
particles[i].x = px[0, 0]
particles[i].y = px[1, 0]
particles[i].yaw = px[2, 0]
return particles
def add_new_landmark(particle, z, Q_cov):
r = z[0]
b = z[1]
lm_id = int(z[2])
s = math.sin(pi_2_pi(particle.yaw + b))
c = math.cos(pi_2_pi(particle.yaw + b))
particle.lm[lm_id, 0] = particle.x + r * c
particle.lm[lm_id, 1] = particle.y + r * s
# covariance
dx = r * c
dy = r * s
d2 = dx**2 + dy**2
d = math.sqrt(d2)
Gz = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
particle.lmP[2 * lm_id:2 * lm_id + 2] = np.linalg.inv(
Gz) @ Q_cov @ np.linalg.inv(Gz.T)
return particle
def compute_jacobians(particle, xf, Pf, Q_cov):
dx = xf[0, 0] - particle.x
dy = xf[1, 0] - particle.y
d2 = dx ** 2 + dy ** 2
d = math.sqrt(d2)
zp = np.array(
[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]).reshape(2, 1)
Hv = np.array([[-dx / d, -dy / d, 0.0],
[dy / d2, -dx / d2, -1.0]])
Hf = np.array([[dx / d, dy / d],
[-dy / d2, dx / d2]])
Sf = Hf @ Pf @ Hf.T + Q_cov
return zp, Hv, Hf, Sf
def update_kf_with_cholesky(xf, Pf, v, Q_cov, Hf):
PHt = Pf @ Hf.T
S = Hf @ PHt + Q_cov
S = (S + S.T) * 0.5
s_chol = np.linalg.cholesky(S).T
s_chol_inv = np.linalg.inv(s_chol)
W1 = PHt @ s_chol_inv
W = W1 @ s_chol_inv.T
x = xf + W @ v
P = Pf - W1 @ W1.T
return x, P
def update_landmark(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2, :])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
dz = z[0:2].reshape(2, 1) - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
xf, Pf = update_kf_with_cholesky(xf, Pf, dz, Q_cov, Hf)
particle.lm[lm_id, :] = xf.T
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
return particle
def compute_weight(particle, z, Q_cov):
lm_id = int(z[2])
xf = np.array(particle.lm[lm_id, :]).reshape(2, 1)
Pf = np.array(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q_cov)
dx = z[0:2].reshape(2, 1) - zp
dx[1, 0] = pi_2_pi(dx[1, 0])
try:
invS = np.linalg.inv(Sf)
except np.linalg.linalg.LinAlgError:
print("singular")
return 1.0
num = np.exp(-0.5 * (dx.T @ invS @ dx))[0, 0]
den = 2.0 * math.pi * math.sqrt(np.linalg.det(Sf))
w = num / den
return w
def update_with_observation(particles, z):
for iz in range(len(z[0, :])):
landmark_id = int(z[2, iz])
for ip in range(N_PARTICLE):
# new landmark
if abs(particles[ip].lm[landmark_id, 0]) <= 0.01:
particles[ip] = add_new_landmark(particles[ip], z[:, iz], Q)
# known landmark
else:
w = compute_weight(particles[ip], z[:, iz], Q)
particles[ip].w *= w
particles[ip] = update_landmark(particles[ip], z[:, iz], Q)
return particles
def resampling(particles):
"""
low variance re-sampling
"""
particles = normalize_weight(particles)
pw = []
for i in range(N_PARTICLE):
pw.append(particles[i].w)
pw = np.array(pw)
n_eff = 1.0 / (pw @ pw.T) # Effective particle number
if n_eff < NTH: # resampling
w_cum = np.cumsum(pw)
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
resample_id = base + np.random.rand(base.shape[0]) / N_PARTICLE
indexes = []
index = 0
for ip in range(N_PARTICLE):
while (index < w_cum.shape[0] - 1) \
and (resample_id[ip] > w_cum[index]):
index += 1
indexes.append(index)
tmp_particles = particles[:]
for i in range(len(indexes)):
particles[i].x = tmp_particles[indexes[i]].x
particles[i].y = tmp_particles[indexes[i]].y
particles[i].yaw = tmp_particles[indexes[i]].yaw
particles[i].lm = tmp_particles[indexes[i]].lm[:, :]
particles[i].lmP = tmp_particles[indexes[i]].lmP[:, :]
particles[i].w = 1.0 / N_PARTICLE
return particles
def calc_input(time):
if time <= 3.0: # wait at first
v = 0.0
yaw_rate = 0.0
else:
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([v, yaw_rate]).reshape(2, 1)
return u
def observation(x_true, xd, u, rfid):
# calc true state
x_true = motion_model(x_true, u)
# add noise to range observation
z = np.zeros((3, 0))
for i in range(len(rfid[:, 0])):
dx = rfid[i, 0] - x_true[0, 0]
dy = rfid[i, 1] - x_true[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx) - x_true[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_SIM[0, 0] ** 0.5 # add noise
angle_with_noize = angle + np.random.randn() * Q_SIM[
1, 1] ** 0.5 # add noise
zi = np.array([dn, pi_2_pi(angle_with_noize), i]).reshape(3, 1)
z = np.hstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_SIM[0, 0] ** 0.5
ud2 = u[1, 0] + np.random.randn() * R_SIM[
1, 1] ** 0.5 + OFFSET_YAW_RATE_NOISE
ud = np.array([ud1, ud2]).reshape(2, 1)
xd = motion_model(xd, ud)
return x_true, z, xd, ud
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
x[2, 0] = pi_2_pi(x[2, 0])
return x
def pi_2_pi(angle):
return angle_mod(angle)
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
rfid = np.array([[10.0, -2.0],
[15.0, 10.0],
[15.0, 15.0],
[10.0, 20.0],
[3.0, 15.0],
[-5.0, 20.0],
[-5.0, 5.0],
[-10.0, 15.0]
])
n_landmark = rfid.shape[0]
# State Vector [x y yaw v]'
x_est = np.zeros((STATE_SIZE, 1)) # SLAM estimation
x_true = np.zeros((STATE_SIZE, 1)) # True state
x_dr = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hist_x_est = x_est
hist_x_true = x_true
hist_x_dr = x_dr
particles = [Particle(n_landmark) for _ in range(N_PARTICLE)]
while SIM_TIME >= time:
time += DT
u = calc_input(time)
x_true, z, x_dr, ud = observation(x_true, x_dr, u, rfid)
particles = fast_slam1(particles, ud, z)
x_est = calc_final_state(particles)
x_state = x_est[0: STATE_SIZE]
# store data history
hist_x_est = np.hstack((hist_x_est, x_state))
hist_x_dr = np.hstack((hist_x_dr, x_dr))
hist_x_true = np.hstack((hist_x_true, x_true))
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event', lambda event:
[exit(0) if event.key == 'escape' else None])
plt.plot(rfid[:, 0], rfid[:, 1], "*k")
for i in range(N_PARTICLE):
plt.plot(particles[i].x, particles[i].y, ".r")
plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb")
plt.plot(hist_x_true[0, :], hist_x_true[1, :], "-b")
plt.plot(hist_x_dr[0, :], hist_x_dr[1, :], "-k")
plt.plot(hist_x_est[0, :], hist_x_est[1, :], "-r")
plt.plot(x_est[0], x_est[1], "xk")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
if __name__ == '__main__':
main()