Files
PythonRobotics/PathPlanning/AStar/a_star_variants.py
Atsushi Sakai 2bf0dcedc9 fix unittest animation bugs (#429)
* fix unittest animation bugs

* exstract a function
2020-11-01 14:05:46 +09:00

484 lines
18 KiB
Python

"""
a star variants
author: Sarim Mehdi(muhammadsarim.mehdi@studio.unibo.it)
Source: http://theory.stanford.edu/~amitp/GameProgramming/Variations.html
"""
import numpy as np
import matplotlib.pyplot as plt
show_animation = True
use_beam_search = False
use_iterative_deepening = False
use_dynamic_weighting = False
use_theta_star = False
use_jump_point = False
beam_capacity = 30
max_theta = 5
only_corners = False
max_corner = 5
w, epsilon, upper_bound_depth = 1, 4, 500
def draw_horizontal_line(start_x, start_y, length, o_x, o_y, o_dict):
for i in range(start_x, start_x + length):
for j in range(start_y, start_y + 2):
o_x.append(i)
o_y.append(j)
o_dict[(i, j)] = True
def draw_vertical_line(start_x, start_y, length, o_x, o_y, o_dict):
for i in range(start_x, start_x + 2):
for j in range(start_y, start_y + length):
o_x.append(i)
o_y.append(j)
o_dict[(i, j)] = True
def in_line_of_sight(obs_grid, x1, y1, x2, y2):
t = 0
while t <= 0.5:
xt = (1 - t) * x1 + t * x2
yt = (1 - t) * y1 + t * y2
if obs_grid[(int(xt), int(yt))]:
return False, None
xt = (1 - t) * x2 + t * x1
yt = (1 - t) * y2 + t * y1
if obs_grid[(int(xt), int(yt))]:
return False, None
t += 0.001
dist = np.linalg.norm(np.array([x1, y1] - np.array([x2, y2])))
return True, dist
def key_points(o_dict):
offsets1 = [(1, 0), (0, 1), (-1, 0), (1, 0)]
offsets2 = [(1, 1), (-1, 1), (-1, -1), (1, -1)]
offsets3 = [(0, 1), (-1, 0), (0, -1), (0, -1)]
c_list = []
for grid_point, obs_status in o_dict.items():
if obs_status:
continue
empty_space = True
x, y = grid_point
for i in [-1, 0, 1]:
for j in [-1, 0, 1]:
if (x + i, y + j) not in o_dict.keys():
continue
if o_dict[(x + i, y + j)]:
empty_space = False
break
if empty_space:
continue
for offset1, offset2, offset3 in zip(offsets1, offsets2, offsets3):
i1, j1 = offset1
i2, j2 = offset2
i3, j3 = offset3
if ((x + i1, y + j1) not in o_dict.keys()) or \
((x + i2, y + j2) not in o_dict.keys()) or \
((x + i3, y + j3) not in o_dict.keys()):
continue
obs_count = 0
if o_dict[(x + i1, y + j1)]:
obs_count += 1
if o_dict[(x + i2, y + j2)]:
obs_count += 1
if o_dict[(x + i3, y + j3)]:
obs_count += 1
if obs_count == 3 or obs_count == 1:
c_list.append((x, y))
if show_animation:
plt.plot(x, y, ".y")
break
if only_corners:
return c_list
e_list = []
for corner in c_list:
x1, y1 = corner
for other_corner in c_list:
x2, y2 = other_corner
if x1 == x2 and y1 == y2:
continue
reachable, _ = in_line_of_sight(o_dict, x1, y1, x2, y2)
if not reachable:
continue
x_m, y_m = int((x1 + x2) / 2), int((y1 + y2) / 2)
e_list.append((x_m, y_m))
if show_animation:
plt.plot(x_m, y_m, ".y")
return c_list + e_list
class SearchAlgo:
def __init__(self, obs_grid, goal_x, goal_y, start_x, start_y,
limit_x, limit_y, corner_list=None):
self.start_pt = [start_x, start_y]
self.goal_pt = [goal_x, goal_y]
self.obs_grid = obs_grid
g_cost, h_cost = 0, self.get_hval(start_x, start_y, goal_x, goal_y)
f_cost = g_cost + h_cost
self.all_nodes, self.open_set = {}, []
if use_jump_point:
for corner in corner_list:
i, j = corner
h_c = self.get_hval(i, j, goal_x, goal_y)
self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None,
'gcost': np.inf, 'hcost': h_c,
'fcost': np.inf,
'open': True, 'in_open_list': False}
self.all_nodes[tuple(self.goal_pt)] = \
{'pos': self.goal_pt, 'pred': None,
'gcost': np.inf, 'hcost': 0, 'fcost': np.inf,
'open': True, 'in_open_list': True}
else:
for i in range(limit_x):
for j in range(limit_y):
h_c = self.get_hval(i, j, goal_x, goal_y)
self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None,
'gcost': np.inf, 'hcost': h_c,
'fcost': np.inf,
'open': True,
'in_open_list': False}
self.all_nodes[tuple(self.start_pt)] = \
{'pos': self.start_pt, 'pred': None,
'gcost': g_cost, 'hcost': h_cost, 'fcost': f_cost,
'open': True, 'in_open_list': True}
self.open_set.append(self.all_nodes[tuple(self.start_pt)])
@staticmethod
def get_hval(x1, y1, x2, y2):
x, y = x1, y1
val = 0
while x != x2 or y != y2:
if x != x2 and y != y2:
val += 14
else:
val += 10
x, y = x + np.sign(x2 - x), y + np.sign(y2 - y)
return val
def get_farthest_point(self, x, y, i, j):
i_temp, j_temp = i, j
counter = 1
got_goal = False
while not self.obs_grid[(x + i_temp, y + j_temp)] and \
counter < max_theta:
i_temp += i
j_temp += j
counter += 1
if [x + i_temp, y + j_temp] == self.goal_pt:
got_goal = True
break
if (x + i_temp, y + j_temp) not in self.obs_grid.keys():
break
return i_temp - 2*i, j_temp - 2*j, counter, got_goal
def jump_point(self):
"""Jump point: Instead of exploring all empty spaces of the
map, just explore the corners."""
goal_found = False
while len(self.open_set) > 0:
self.open_set = sorted(self.open_set, key=lambda x: x['fcost'])
lowest_f = self.open_set[0]['fcost']
lowest_h = self.open_set[0]['hcost']
lowest_g = self.open_set[0]['gcost']
p = 0
for p_n in self.open_set[1:]:
if p_n['fcost'] == lowest_f and \
p_n['gcost'] < lowest_g:
lowest_g = p_n['gcost']
p += 1
elif p_n['fcost'] == lowest_f and \
p_n['gcost'] == lowest_g and \
p_n['hcost'] < lowest_h:
lowest_h = p_n['hcost']
p += 1
else:
break
current_node = self.all_nodes[tuple(self.open_set[p]['pos'])]
x1, y1 = current_node['pos']
for cand_pt, cand_node in self.all_nodes.items():
x2, y2 = cand_pt
if x1 == x2 and y1 == y2:
continue
if np.linalg.norm(np.array([x1, y1] -
np.array([x2, y2]))) > max_corner:
continue
reachable, offset = in_line_of_sight(self.obs_grid, x1,
y1, x2, y2)
if not reachable:
continue
if list(cand_pt) == self.goal_pt:
current_node['open'] = False
self.all_nodes[tuple(cand_pt)]['pred'] = \
current_node['pos']
goal_found = True
break
g_cost = offset + current_node['gcost']
h_cost = self.all_nodes[cand_pt]['hcost']
f_cost = g_cost + h_cost
cand_pt = tuple(cand_pt)
if f_cost < self.all_nodes[cand_pt]['fcost']:
self.all_nodes[cand_pt]['pred'] = current_node['pos']
self.all_nodes[cand_pt]['gcost'] = g_cost
self.all_nodes[cand_pt]['fcost'] = f_cost
if not self.all_nodes[cand_pt]['in_open_list']:
self.open_set.append(self.all_nodes[cand_pt])
self.all_nodes[cand_pt]['in_open_list'] = True
if show_animation:
plt.plot(cand_pt[0], cand_pt[1], "r*")
if goal_found:
break
if show_animation:
plt.pause(0.001)
if goal_found:
current_node = self.all_nodes[tuple(self.goal_pt)]
while goal_found:
if current_node['pred'] is None:
break
x = [current_node['pos'][0], current_node['pred'][0]]
y = [current_node['pos'][1], current_node['pred'][1]]
current_node = self.all_nodes[tuple(current_node['pred'])]
if show_animation:
plt.plot(x, y, "b")
plt.pause(0.001)
if goal_found:
break
current_node['open'] = False
current_node['in_open_list'] = False
if show_animation:
plt.plot(current_node['pos'][0], current_node['pos'][1], "g*")
del self.open_set[p]
current_node['fcost'], current_node['hcost'] = np.inf, np.inf
if show_animation:
plt.title('Jump Point')
plt.show()
def a_star(self):
"""Beam search: Maintain an open list of just 30 nodes.
If more than 30 nodes, then get rid of nodes with high
f values.
Iterative deepening: At every iteration, get a cut-off
value for the f cost. This cut-off is minimum of the f
value of all nodes whose f value is higher than the
current cut-off value. Nodes with f value higher than
the current cut off value are not put in the open set.
Dynamic weighting: Multiply heuristic with the following:
(1 + epsilon - (epsilon*d)/N) where d is the current
iteration of loop and N is upper bound on number of
iterations.
Theta star: Same as A star but you don't need to move
one neighbor at a time. In fact, you can look for the
next node as far out as you can as long as there is a
clear line of sight from your current node to that node."""
if show_animation:
if use_beam_search:
plt.title('A* with beam search')
elif use_iterative_deepening:
plt.title('A* with iterative deepening')
elif use_dynamic_weighting:
plt.title('A* with dynamic weighting')
elif use_theta_star:
plt.title('Theta*')
else:
plt.title('A*')
goal_found = False
curr_f_thresh = np.inf
depth = 0
no_valid_f = False
w = None
while len(self.open_set) > 0:
self.open_set = sorted(self.open_set, key=lambda x: x['fcost'])
lowest_f = self.open_set[0]['fcost']
lowest_h = self.open_set[0]['hcost']
lowest_g = self.open_set[0]['gcost']
p = 0
for p_n in self.open_set[1:]:
if p_n['fcost'] == lowest_f and \
p_n['gcost'] < lowest_g:
lowest_g = p_n['gcost']
p += 1
elif p_n['fcost'] == lowest_f and \
p_n['gcost'] == lowest_g and \
p_n['hcost'] < lowest_h:
lowest_h = p_n['hcost']
p += 1
else:
break
current_node = self.all_nodes[tuple(self.open_set[p]['pos'])]
while len(self.open_set) > beam_capacity and use_beam_search:
del self.open_set[-1]
f_cost_list = []
if use_dynamic_weighting:
w = (1 + epsilon - epsilon*depth/upper_bound_depth)
for i in range(-1, 2):
for j in range(-1, 2):
x, y = current_node['pos']
if (i == 0 and j == 0) or \
((x + i, y + j) not in self.obs_grid.keys()):
continue
if (i, j) in [(1, 0), (0, 1), (-1, 0), (0, -1)]:
offset = 10
else:
offset = 14
if use_theta_star:
new_i, new_j, counter, goal_found = \
self.get_farthest_point(x, y, i, j)
offset = offset * counter
cand_pt = [current_node['pos'][0] + new_i,
current_node['pos'][1] + new_j]
else:
cand_pt = [current_node['pos'][0] + i,
current_node['pos'][1] + j]
if use_theta_star and goal_found:
current_node['open'] = False
cand_pt = self.goal_pt
self.all_nodes[tuple(cand_pt)]['pred'] = \
current_node['pos']
break
if cand_pt == self.goal_pt:
current_node['open'] = False
self.all_nodes[tuple(cand_pt)]['pred'] = \
current_node['pos']
goal_found = True
break
cand_pt = tuple(cand_pt)
no_valid_f = self.update_node_cost(cand_pt, curr_f_thresh,
current_node,
f_cost_list, no_valid_f,
offset, w)
if goal_found:
break
if show_animation:
plt.pause(0.001)
if goal_found:
current_node = self.all_nodes[tuple(self.goal_pt)]
while goal_found:
if current_node['pred'] is None:
break
if use_theta_star or use_jump_point:
x, y = [current_node['pos'][0], current_node['pred'][0]], \
[current_node['pos'][1], current_node['pred'][1]]
if show_animation:
plt.plot(x, y, "b")
else:
if show_animation:
plt.plot(current_node['pred'][0],
current_node['pred'][1], "b*")
current_node = self.all_nodes[tuple(current_node['pred'])]
if goal_found:
break
if use_iterative_deepening and f_cost_list:
curr_f_thresh = min(f_cost_list)
if use_iterative_deepening and not f_cost_list:
curr_f_thresh = np.inf
if use_iterative_deepening and not f_cost_list and no_valid_f:
current_node['fcost'], current_node['hcost'] = np.inf, np.inf
continue
current_node['open'] = False
current_node['in_open_list'] = False
if show_animation:
plt.plot(current_node['pos'][0], current_node['pos'][1], "g*")
del self.open_set[p]
current_node['fcost'], current_node['hcost'] = np.inf, np.inf
depth += 1
if show_animation:
plt.show()
def update_node_cost(self, cand_pt, curr_f_thresh, current_node,
f_cost_list, no_valid_f, offset, w):
if not self.obs_grid[tuple(cand_pt)] and \
self.all_nodes[cand_pt]['open']:
g_cost = offset + current_node['gcost']
h_cost = self.all_nodes[cand_pt]['hcost']
if use_dynamic_weighting:
h_cost = h_cost * w
f_cost = g_cost + h_cost
if f_cost < self.all_nodes[cand_pt]['fcost'] and \
f_cost <= curr_f_thresh:
f_cost_list.append(f_cost)
self.all_nodes[cand_pt]['pred'] = \
current_node['pos']
self.all_nodes[cand_pt]['gcost'] = g_cost
self.all_nodes[cand_pt]['fcost'] = f_cost
if not self.all_nodes[cand_pt]['in_open_list']:
self.open_set.append(self.all_nodes[cand_pt])
self.all_nodes[cand_pt]['in_open_list'] = True
if show_animation:
plt.plot(cand_pt[0], cand_pt[1], "r*")
if curr_f_thresh < f_cost < \
self.all_nodes[cand_pt]['fcost']:
no_valid_f = True
return no_valid_f
def main():
# set obstacle positions
obs_dict = {}
for i in range(51):
for j in range(51):
obs_dict[(i, j)] = False
o_x, o_y = [], []
s_x = 5.0
s_y = 5.0
g_x = 35.0
g_y = 45.0
# draw outer border of maze
draw_vertical_line(0, 0, 50, o_x, o_y, obs_dict)
draw_vertical_line(48, 0, 50, o_x, o_y, obs_dict)
draw_horizontal_line(0, 0, 50, o_x, o_y, obs_dict)
draw_horizontal_line(0, 48, 50, o_x, o_y, obs_dict)
# draw inner walls
all_x = [10, 10, 10, 15, 20, 20, 30, 30, 35, 30, 40, 45]
all_y = [10, 30, 45, 20, 5, 40, 10, 40, 5, 40, 10, 25]
all_len = [10, 10, 5, 10, 10, 5, 20, 10, 25, 10, 35, 15]
for x, y, l in zip(all_x, all_y, all_len):
draw_vertical_line(x, y, l, o_x, o_y, obs_dict)
all_x[:], all_y[:], all_len[:] = [], [], []
all_x = [35, 40, 15, 10, 45, 20, 10, 15, 25, 45, 10, 30, 10, 40]
all_y = [5, 10, 15, 20, 20, 25, 30, 35, 35, 35, 40, 40, 45, 45]
all_len = [10, 5, 10, 10, 5, 5, 10, 5, 10, 5, 10, 5, 5, 5]
for x, y, l in zip(all_x, all_y, all_len):
draw_horizontal_line(x, y, l, o_x, o_y, obs_dict)
if show_animation:
plt.plot(o_x, o_y, ".k")
plt.plot(s_x, s_y, "og")
plt.plot(g_x, g_y, "xb")
plt.grid(True)
if use_jump_point:
keypoint_list = key_points(obs_dict)
search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101,
keypoint_list)
search_obj.jump_point()
else:
search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101)
search_obj.a_star()
if __name__ == '__main__':
main()