mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 16:57:58 -05:00
* feat: Add third derivative and curvature rate calculations to CubicSpline classes * feat: Extend frenet_optimal_trajectory to support more scenarios * fix: frenet optimal trajectory type check * fix: cubic spline planner code style check * fix: frenet optimal trajectory review * feat: frenet_optimal_trajectory update doc * fix: frenet optimal trajectory review * fix: frenet optimal trajectory * fix: frenet optimal trajectory
456 lines
11 KiB
Python
456 lines
11 KiB
Python
"""
|
|
Cubic spline planner
|
|
|
|
Author: Atsushi Sakai(@Atsushi_twi)
|
|
|
|
"""
|
|
import math
|
|
import numpy as np
|
|
import bisect
|
|
|
|
|
|
class CubicSpline1D:
|
|
"""
|
|
1D Cubic Spline class
|
|
|
|
Parameters
|
|
----------
|
|
x : list
|
|
x coordinates for data points. This x coordinates must be
|
|
sorted
|
|
in ascending order.
|
|
y : list
|
|
y coordinates for data points
|
|
|
|
Examples
|
|
--------
|
|
You can interpolate 1D data points.
|
|
|
|
>>> import numpy as np
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.arange(5)
|
|
>>> y = [1.7, -6, 5, 6.5, 0.0]
|
|
>>> sp = CubicSpline1D(x, y)
|
|
>>> xi = np.linspace(0.0, 5.0)
|
|
>>> yi = [sp.calc_position(x) for x in xi]
|
|
>>> plt.plot(x, y, "xb", label="Data points")
|
|
>>> plt.plot(xi, yi , "r", label="Cubic spline interpolation")
|
|
>>> plt.grid(True)
|
|
>>> plt.legend()
|
|
>>> plt.show()
|
|
|
|
.. image:: cubic_spline_1d.png
|
|
|
|
"""
|
|
|
|
def __init__(self, x, y):
|
|
|
|
h = np.diff(x)
|
|
if np.any(h < 0):
|
|
raise ValueError("x coordinates must be sorted in ascending order")
|
|
|
|
self.a, self.b, self.c, self.d = [], [], [], []
|
|
self.x = x
|
|
self.y = y
|
|
self.nx = len(x) # dimension of x
|
|
|
|
# calc coefficient a
|
|
self.a = [iy for iy in y]
|
|
|
|
# calc coefficient c
|
|
A = self.__calc_A(h)
|
|
B = self.__calc_B(h, self.a)
|
|
self.c = np.linalg.solve(A, B)
|
|
|
|
# calc spline coefficient b and d
|
|
for i in range(self.nx - 1):
|
|
d = (self.c[i + 1] - self.c[i]) / (3.0 * h[i])
|
|
b = 1.0 / h[i] * (self.a[i + 1] - self.a[i]) \
|
|
- h[i] / 3.0 * (2.0 * self.c[i] + self.c[i + 1])
|
|
self.d.append(d)
|
|
self.b.append(b)
|
|
|
|
def calc_position(self, x):
|
|
"""
|
|
Calc `y` position for given `x`.
|
|
|
|
if `x` is outside the data point's `x` range, return None.
|
|
|
|
Parameters
|
|
----------
|
|
x : float
|
|
x position to calculate y.
|
|
|
|
Returns
|
|
-------
|
|
y : float
|
|
y position for given x.
|
|
"""
|
|
if x < self.x[0]:
|
|
return None
|
|
elif x > self.x[-1]:
|
|
return None
|
|
|
|
i = self.__search_index(x)
|
|
dx = x - self.x[i]
|
|
position = self.a[i] + self.b[i] * dx + \
|
|
self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0
|
|
|
|
return position
|
|
|
|
def calc_first_derivative(self, x):
|
|
"""
|
|
Calc first derivative at given x.
|
|
|
|
if x is outside the input x, return None
|
|
|
|
Parameters
|
|
----------
|
|
x : float
|
|
x position to calculate first derivative.
|
|
|
|
Returns
|
|
-------
|
|
dy : float
|
|
first derivative for given x.
|
|
"""
|
|
|
|
if x < self.x[0]:
|
|
return None
|
|
elif x > self.x[-1]:
|
|
return None
|
|
|
|
i = self.__search_index(x)
|
|
dx = x - self.x[i]
|
|
dy = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
|
|
return dy
|
|
|
|
def calc_second_derivative(self, x):
|
|
"""
|
|
Calc second derivative at given x.
|
|
|
|
if x is outside the input x, return None
|
|
|
|
Parameters
|
|
----------
|
|
x : float
|
|
x position to calculate second derivative.
|
|
|
|
Returns
|
|
-------
|
|
ddy : float
|
|
second derivative for given x.
|
|
"""
|
|
|
|
if x < self.x[0]:
|
|
return None
|
|
elif x > self.x[-1]:
|
|
return None
|
|
|
|
i = self.__search_index(x)
|
|
dx = x - self.x[i]
|
|
ddy = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
|
|
return ddy
|
|
|
|
def calc_third_derivative(self, x):
|
|
"""
|
|
Calc third derivative at given x.
|
|
|
|
if x is outside the input x, return None
|
|
|
|
Parameters
|
|
----------
|
|
x : float
|
|
x position to calculate third derivative.
|
|
|
|
Returns
|
|
-------
|
|
dddy : float
|
|
third derivative for given x.
|
|
"""
|
|
if x < self.x[0]:
|
|
return None
|
|
elif x > self.x[-1]:
|
|
return None
|
|
|
|
i = self.__search_index(x)
|
|
dddy = 6.0 * self.d[i]
|
|
return dddy
|
|
|
|
def __search_index(self, x):
|
|
"""
|
|
search data segment index
|
|
"""
|
|
return bisect.bisect(self.x, x) - 1
|
|
|
|
def __calc_A(self, h):
|
|
"""
|
|
calc matrix A for spline coefficient c
|
|
"""
|
|
A = np.zeros((self.nx, self.nx))
|
|
A[0, 0] = 1.0
|
|
for i in range(self.nx - 1):
|
|
if i != (self.nx - 2):
|
|
A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
|
|
A[i + 1, i] = h[i]
|
|
A[i, i + 1] = h[i]
|
|
|
|
A[0, 1] = 0.0
|
|
A[self.nx - 1, self.nx - 2] = 0.0
|
|
A[self.nx - 1, self.nx - 1] = 1.0
|
|
return A
|
|
|
|
def __calc_B(self, h, a):
|
|
"""
|
|
calc matrix B for spline coefficient c
|
|
"""
|
|
B = np.zeros(self.nx)
|
|
for i in range(self.nx - 2):
|
|
B[i + 1] = 3.0 * (a[i + 2] - a[i + 1]) / h[i + 1]\
|
|
- 3.0 * (a[i + 1] - a[i]) / h[i]
|
|
return B
|
|
|
|
|
|
class CubicSpline2D:
|
|
"""
|
|
Cubic CubicSpline2D class
|
|
|
|
Parameters
|
|
----------
|
|
x : list
|
|
x coordinates for data points.
|
|
y : list
|
|
y coordinates for data points.
|
|
|
|
Examples
|
|
--------
|
|
You can interpolate a 2D data points.
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
|
|
>>> y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
|
|
>>> ds = 0.1 # [m] distance of each interpolated points
|
|
>>> sp = CubicSpline2D(x, y)
|
|
>>> s = np.arange(0, sp.s[-1], ds)
|
|
>>> rx, ry, ryaw, rk = [], [], [], []
|
|
>>> for i_s in s:
|
|
... ix, iy = sp.calc_position(i_s)
|
|
... rx.append(ix)
|
|
... ry.append(iy)
|
|
... ryaw.append(sp.calc_yaw(i_s))
|
|
... rk.append(sp.calc_curvature(i_s))
|
|
>>> plt.subplots(1)
|
|
>>> plt.plot(x, y, "xb", label="Data points")
|
|
>>> plt.plot(rx, ry, "-r", label="Cubic spline path")
|
|
>>> plt.grid(True)
|
|
>>> plt.axis("equal")
|
|
>>> plt.xlabel("x[m]")
|
|
>>> plt.ylabel("y[m]")
|
|
>>> plt.legend()
|
|
>>> plt.show()
|
|
|
|
.. image:: cubic_spline_2d_path.png
|
|
|
|
>>> plt.subplots(1)
|
|
>>> plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw")
|
|
>>> plt.grid(True)
|
|
>>> plt.legend()
|
|
>>> plt.xlabel("line length[m]")
|
|
>>> plt.ylabel("yaw angle[deg]")
|
|
|
|
.. image:: cubic_spline_2d_yaw.png
|
|
|
|
>>> plt.subplots(1)
|
|
>>> plt.plot(s, rk, "-r", label="curvature")
|
|
>>> plt.grid(True)
|
|
>>> plt.legend()
|
|
>>> plt.xlabel("line length[m]")
|
|
>>> plt.ylabel("curvature [1/m]")
|
|
|
|
.. image:: cubic_spline_2d_curvature.png
|
|
"""
|
|
|
|
def __init__(self, x, y):
|
|
self.s = self.__calc_s(x, y)
|
|
self.sx = CubicSpline1D(self.s, x)
|
|
self.sy = CubicSpline1D(self.s, y)
|
|
|
|
def __calc_s(self, x, y):
|
|
dx = np.diff(x)
|
|
dy = np.diff(y)
|
|
self.ds = np.hypot(dx, dy)
|
|
s = [0]
|
|
s.extend(np.cumsum(self.ds))
|
|
return s
|
|
|
|
def calc_position(self, s):
|
|
"""
|
|
calc position
|
|
|
|
Parameters
|
|
----------
|
|
s : float
|
|
distance from the start point. if `s` is outside the data point's
|
|
range, return None.
|
|
|
|
Returns
|
|
-------
|
|
x : float
|
|
x position for given s.
|
|
y : float
|
|
y position for given s.
|
|
"""
|
|
x = self.sx.calc_position(s)
|
|
y = self.sy.calc_position(s)
|
|
|
|
return x, y
|
|
|
|
def calc_curvature(self, s):
|
|
"""
|
|
calc curvature
|
|
|
|
Parameters
|
|
----------
|
|
s : float
|
|
distance from the start point. if `s` is outside the data point's
|
|
range, return None.
|
|
|
|
Returns
|
|
-------
|
|
k : float
|
|
curvature for given s.
|
|
"""
|
|
dx = self.sx.calc_first_derivative(s)
|
|
ddx = self.sx.calc_second_derivative(s)
|
|
dy = self.sy.calc_first_derivative(s)
|
|
ddy = self.sy.calc_second_derivative(s)
|
|
k = (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
|
|
return k
|
|
|
|
def calc_curvature_rate(self, s):
|
|
"""
|
|
calc curvature rate
|
|
|
|
Parameters
|
|
----------
|
|
s : float
|
|
distance from the start point. if `s` is outside the data point's
|
|
range, return None.
|
|
|
|
Returns
|
|
-------
|
|
k : float
|
|
curvature rate for given s.
|
|
"""
|
|
dx = self.sx.calc_first_derivative(s)
|
|
dy = self.sy.calc_first_derivative(s)
|
|
ddx = self.sx.calc_second_derivative(s)
|
|
ddy = self.sy.calc_second_derivative(s)
|
|
dddx = self.sx.calc_third_derivative(s)
|
|
dddy = self.sy.calc_third_derivative(s)
|
|
a = dx * ddy - dy * ddx
|
|
b = dx * dddy - dy * dddx
|
|
c = dx * ddx + dy * ddy
|
|
d = dx * dx + dy * dy
|
|
return (b * d - 3.0 * a * c) / (d * d * d)
|
|
|
|
def calc_yaw(self, s):
|
|
"""
|
|
calc yaw
|
|
|
|
Parameters
|
|
----------
|
|
s : float
|
|
distance from the start point. if `s` is outside the data point's
|
|
range, return None.
|
|
|
|
Returns
|
|
-------
|
|
yaw : float
|
|
yaw angle (tangent vector) for given s.
|
|
"""
|
|
dx = self.sx.calc_first_derivative(s)
|
|
dy = self.sy.calc_first_derivative(s)
|
|
yaw = math.atan2(dy, dx)
|
|
return yaw
|
|
|
|
|
|
def calc_spline_course(x, y, ds=0.1):
|
|
sp = CubicSpline2D(x, y)
|
|
s = list(np.arange(0, sp.s[-1], ds))
|
|
|
|
rx, ry, ryaw, rk = [], [], [], []
|
|
for i_s in s:
|
|
ix, iy = sp.calc_position(i_s)
|
|
rx.append(ix)
|
|
ry.append(iy)
|
|
ryaw.append(sp.calc_yaw(i_s))
|
|
rk.append(sp.calc_curvature(i_s))
|
|
|
|
return rx, ry, ryaw, rk, s
|
|
|
|
|
|
def main_1d():
|
|
print("CubicSpline1D test")
|
|
import matplotlib.pyplot as plt
|
|
x = np.arange(5)
|
|
y = [1.7, -6, 5, 6.5, 0.0]
|
|
sp = CubicSpline1D(x, y)
|
|
xi = np.linspace(0.0, 5.0)
|
|
|
|
plt.plot(x, y, "xb", label="Data points")
|
|
plt.plot(xi, [sp.calc_position(x) for x in xi], "r",
|
|
label="Cubic spline interpolation")
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
|
|
def main_2d(): # pragma: no cover
|
|
print("CubicSpline1D 2D test")
|
|
import matplotlib.pyplot as plt
|
|
x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
|
|
y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
|
|
ds = 0.1 # [m] distance of each interpolated points
|
|
|
|
sp = CubicSpline2D(x, y)
|
|
s = np.arange(0, sp.s[-1], ds)
|
|
|
|
rx, ry, ryaw, rk = [], [], [], []
|
|
for i_s in s:
|
|
ix, iy = sp.calc_position(i_s)
|
|
rx.append(ix)
|
|
ry.append(iy)
|
|
ryaw.append(sp.calc_yaw(i_s))
|
|
rk.append(sp.calc_curvature(i_s))
|
|
|
|
plt.subplots(1)
|
|
plt.plot(x, y, "xb", label="Data points")
|
|
plt.plot(rx, ry, "-r", label="Cubic spline path")
|
|
plt.grid(True)
|
|
plt.axis("equal")
|
|
plt.xlabel("x[m]")
|
|
plt.ylabel("y[m]")
|
|
plt.legend()
|
|
|
|
plt.subplots(1)
|
|
plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw")
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.xlabel("line length[m]")
|
|
plt.ylabel("yaw angle[deg]")
|
|
|
|
plt.subplots(1)
|
|
plt.plot(s, rk, "-r", label="curvature")
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.xlabel("line length[m]")
|
|
plt.ylabel("curvature [1/m]")
|
|
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# main_1d()
|
|
main_2d()
|