Files
PythonRobotics/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py
parmaski b5988dbcbc Fix: Hybrid A* direction is incorrect (#1086)
* fix to preseve direction history

* add path to Reeds Shepp and its users e.g. hybrid A*
2024-12-21 19:39:16 +09:00

479 lines
14 KiB
Python

"""
Reeds Shepp path planner sample code
author Atsushi Sakai(@Atsushi_twi)
co-author Videh Patel(@videh25) : Added the missing RS paths
"""
import sys
import pathlib
sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
import math
import matplotlib.pyplot as plt
import numpy as np
from utils.angle import angle_mod
show_animation = True
class Path:
"""
Path data container
"""
def __init__(self):
# course segment length (negative value is backward segment)
self.lengths = []
# course segment type char ("S": straight, "L": left, "R": right)
self.ctypes = []
self.L = 0.0 # Total lengths of the path
self.x = [] # x positions
self.y = [] # y positions
self.yaw = [] # orientations [rad]
self.directions = [] # directions (1:forward, -1:backward)
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
if isinstance(x, list):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc,
ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
def pi_2_pi(x):
return angle_mod(x)
def mod2pi(x):
# Be consistent with fmod in cplusplus here.
v = np.mod(x, np.copysign(2.0 * math.pi, x))
if v < -math.pi:
v += 2.0 * math.pi
else:
if v > math.pi:
v -= 2.0 * math.pi
return v
def set_path(paths, lengths, ctypes, step_size):
path = Path()
path.ctypes = ctypes
path.lengths = lengths
path.L = sum(np.abs(lengths))
# check same path exist
for i_path in paths:
type_is_same = (i_path.ctypes == path.ctypes)
length_is_close = (sum(np.abs(i_path.lengths)) - path.L) <= step_size
if type_is_same and length_is_close:
return paths # same path found, so do not insert path
# check path is long enough
if path.L <= step_size:
return paths # too short, so do not insert path
paths.append(path)
return paths
def polar(x, y):
r = math.hypot(x, y)
theta = math.atan2(y, x)
return r, theta
def left_straight_left(x, y, phi):
u, t = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if 0.0 <= t <= math.pi:
v = mod2pi(phi - t)
if 0.0 <= v <= math.pi:
return True, [t, u, v], ['L', 'S', 'L']
return False, [], []
def left_straight_right(x, y, phi):
u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi))
u1 = u1 ** 2
if u1 >= 4.0:
u = math.sqrt(u1 - 4.0)
theta = math.atan2(2.0, u)
t = mod2pi(t1 + theta)
v = mod2pi(t - phi)
if (t >= 0.0) and (v >= 0.0):
return True, [t, u, v], ['L', 'S', 'R']
return False, [], []
def left_x_right_x_left(x, y, phi):
zeta = x - math.sin(phi)
eeta = y - 1 + math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 <= 4.0:
A = math.acos(0.25 * u1)
t = mod2pi(A + theta + math.pi/2)
u = mod2pi(math.pi - 2 * A)
v = mod2pi(phi - t - u)
return True, [t, -u, v], ['L', 'R', 'L']
return False, [], []
def left_x_right_left(x, y, phi):
zeta = x - math.sin(phi)
eeta = y - 1 + math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 <= 4.0:
A = math.acos(0.25 * u1)
t = mod2pi(A + theta + math.pi/2)
u = mod2pi(math.pi - 2*A)
v = mod2pi(-phi + t + u)
return True, [t, -u, -v], ['L', 'R', 'L']
return False, [], []
def left_right_x_left(x, y, phi):
zeta = x - math.sin(phi)
eeta = y - 1 + math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 <= 4.0:
u = math.acos(1 - u1**2 * 0.125)
A = math.asin(2 * math.sin(u) / u1)
t = mod2pi(-A + theta + math.pi/2)
v = mod2pi(t - u - phi)
return True, [t, u, -v], ['L', 'R', 'L']
return False, [], []
def left_right_x_left_right(x, y, phi):
zeta = x + math.sin(phi)
eeta = y - 1 - math.cos(phi)
u1, theta = polar(zeta, eeta)
# Solutions refering to (2 < u1 <= 4) are considered sub-optimal in paper
# Solutions do not exist for u1 > 4
if u1 <= 2:
A = math.acos((u1 + 2) * 0.25)
t = mod2pi(theta + A + math.pi/2)
u = mod2pi(A)
v = mod2pi(phi - t + 2*u)
if ((t >= 0) and (u >= 0) and (v >= 0)):
return True, [t, u, -u, -v], ['L', 'R', 'L', 'R']
return False, [], []
def left_x_right_left_x_right(x, y, phi):
zeta = x + math.sin(phi)
eeta = y - 1 - math.cos(phi)
u1, theta = polar(zeta, eeta)
u2 = (20 - u1**2) / 16
if (0 <= u2 <= 1):
u = math.acos(u2)
A = math.asin(2 * math.sin(u) / u1)
t = mod2pi(theta + A + math.pi/2)
v = mod2pi(t - phi)
if (t >= 0) and (v >= 0):
return True, [t, -u, -u, v], ['L', 'R', 'L', 'R']
return False, [], []
def left_x_right90_straight_left(x, y, phi):
zeta = x - math.sin(phi)
eeta = y - 1 + math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 >= 2.0:
u = math.sqrt(u1**2 - 4) - 2
A = math.atan2(2, math.sqrt(u1**2 - 4))
t = mod2pi(theta + A + math.pi/2)
v = mod2pi(t - phi + math.pi/2)
if (t >= 0) and (v >= 0):
return True, [t, -math.pi/2, -u, -v], ['L', 'R', 'S', 'L']
return False, [], []
def left_straight_right90_x_left(x, y, phi):
zeta = x - math.sin(phi)
eeta = y - 1 + math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 >= 2.0:
u = math.sqrt(u1**2 - 4) - 2
A = math.atan2(math.sqrt(u1**2 - 4), 2)
t = mod2pi(theta - A + math.pi/2)
v = mod2pi(t - phi - math.pi/2)
if (t >= 0) and (v >= 0):
return True, [t, u, math.pi/2, -v], ['L', 'S', 'R', 'L']
return False, [], []
def left_x_right90_straight_right(x, y, phi):
zeta = x + math.sin(phi)
eeta = y - 1 - math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 >= 2.0:
t = mod2pi(theta + math.pi/2)
u = u1 - 2
v = mod2pi(phi - t - math.pi/2)
if (t >= 0) and (v >= 0):
return True, [t, -math.pi/2, -u, -v], ['L', 'R', 'S', 'R']
return False, [], []
def left_straight_left90_x_right(x, y, phi):
zeta = x + math.sin(phi)
eeta = y - 1 - math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 >= 2.0:
t = mod2pi(theta)
u = u1 - 2
v = mod2pi(phi - t - math.pi/2)
if (t >= 0) and (v >= 0):
return True, [t, u, math.pi/2, -v], ['L', 'S', 'L', 'R']
return False, [], []
def left_x_right90_straight_left90_x_right(x, y, phi):
zeta = x + math.sin(phi)
eeta = y - 1 - math.cos(phi)
u1, theta = polar(zeta, eeta)
if u1 >= 4.0:
u = math.sqrt(u1**2 - 4) - 4
A = math.atan2(2, math.sqrt(u1**2 - 4))
t = mod2pi(theta + A + math.pi/2)
v = mod2pi(t - phi)
if (t >= 0) and (v >= 0):
return True, [t, -math.pi/2, -u, -math.pi/2, v], ['L', 'R', 'S', 'L', 'R']
return False, [], []
def timeflip(travel_distances):
return [-x for x in travel_distances]
def reflect(steering_directions):
def switch_dir(dirn):
if dirn == 'L':
return 'R'
elif dirn == 'R':
return 'L'
else:
return 'S'
return[switch_dir(dirn) for dirn in steering_directions]
def generate_path(q0, q1, max_curvature, step_size):
dx = q1[0] - q0[0]
dy = q1[1] - q0[1]
dth = q1[2] - q0[2]
c = math.cos(q0[2])
s = math.sin(q0[2])
x = (c * dx + s * dy) * max_curvature
y = (-s * dx + c * dy) * max_curvature
step_size *= max_curvature
paths = []
path_functions = [left_straight_left, left_straight_right, # CSC
left_x_right_x_left, left_x_right_left, left_right_x_left, # CCC
left_right_x_left_right, left_x_right_left_x_right, # CCCC
left_x_right90_straight_left, left_x_right90_straight_right, # CCSC
left_straight_right90_x_left, left_straight_left90_x_right, # CSCC
left_x_right90_straight_left90_x_right] # CCSCC
for path_func in path_functions:
flag, travel_distances, steering_dirns = path_func(x, y, dth)
if flag:
for distance in travel_distances:
if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size):
print("Step size too large for Reeds-Shepp paths.")
return []
paths = set_path(paths, travel_distances, steering_dirns, step_size)
flag, travel_distances, steering_dirns = path_func(-x, y, -dth)
if flag:
for distance in travel_distances:
if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size):
print("Step size too large for Reeds-Shepp paths.")
return []
travel_distances = timeflip(travel_distances)
paths = set_path(paths, travel_distances, steering_dirns, step_size)
flag, travel_distances, steering_dirns = path_func(x, -y, -dth)
if flag:
for distance in travel_distances:
if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size):
print("Step size too large for Reeds-Shepp paths.")
return []
steering_dirns = reflect(steering_dirns)
paths = set_path(paths, travel_distances, steering_dirns, step_size)
flag, travel_distances, steering_dirns = path_func(-x, -y, dth)
if flag:
for distance in travel_distances:
if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size):
print("Step size too large for Reeds-Shepp paths.")
return []
travel_distances = timeflip(travel_distances)
steering_dirns = reflect(steering_dirns)
paths = set_path(paths, travel_distances, steering_dirns, step_size)
return paths
def calc_interpolate_dists_list(lengths, step_size):
interpolate_dists_list = []
for length in lengths:
d_dist = step_size if length >= 0.0 else -step_size
interp_dists = np.arange(0.0, length, d_dist)
interp_dists = np.append(interp_dists, length)
interpolate_dists_list.append(interp_dists)
return interpolate_dists_list
def generate_local_course(lengths, modes, max_curvature, step_size):
interpolate_dists_list = calc_interpolate_dists_list(lengths, step_size * max_curvature)
origin_x, origin_y, origin_yaw = 0.0, 0.0, 0.0
xs, ys, yaws, directions = [], [], [], []
for (interp_dists, mode, length) in zip(interpolate_dists_list, modes,
lengths):
for dist in interp_dists:
x, y, yaw, direction = interpolate(dist, length, mode,
max_curvature, origin_x,
origin_y, origin_yaw)
xs.append(x)
ys.append(y)
yaws.append(yaw)
directions.append(direction)
origin_x = xs[-1]
origin_y = ys[-1]
origin_yaw = yaws[-1]
return xs, ys, yaws, directions
def interpolate(dist, length, mode, max_curvature, origin_x, origin_y,
origin_yaw):
if mode == "S":
x = origin_x + dist / max_curvature * math.cos(origin_yaw)
y = origin_y + dist / max_curvature * math.sin(origin_yaw)
yaw = origin_yaw
else: # curve
ldx = math.sin(dist) / max_curvature
ldy = 0.0
yaw = None
if mode == "L": # left turn
ldy = (1.0 - math.cos(dist)) / max_curvature
yaw = origin_yaw + dist
elif mode == "R": # right turn
ldy = (1.0 - math.cos(dist)) / -max_curvature
yaw = origin_yaw - dist
gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy
gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy
x = origin_x + gdx
y = origin_y + gdy
return x, y, yaw, 1 if length > 0.0 else -1
def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
q0 = [sx, sy, syaw]
q1 = [gx, gy, gyaw]
paths = generate_path(q0, q1, maxc, step_size)
for path in paths:
xs, ys, yaws, directions = generate_local_course(path.lengths,
path.ctypes, maxc,
step_size)
# convert global coordinate
path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for
(ix, iy) in zip(xs, ys)]
path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for
(ix, iy) in zip(xs, ys)]
path.yaw = [pi_2_pi(yaw + q0[2]) for yaw in yaws]
path.directions = directions
path.lengths = [length / maxc for length in path.lengths]
path.L = path.L / maxc
return paths
def reeds_shepp_path_planning(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
if not paths:
return None, None, None, None, None # could not generate any path
# search minimum cost path
best_path_index = paths.index(min(paths, key=lambda p: abs(p.L)))
b_path = paths[best_path_index]
return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths
def main():
print("Reeds Shepp path planner sample start!!")
start_x = -1.0 # [m]
start_y = -4.0 # [m]
start_yaw = np.deg2rad(-20.0) # [rad]
end_x = 5.0 # [m]
end_y = 5.0 # [m]
end_yaw = np.deg2rad(25.0) # [rad]
curvature = 0.1
step_size = 0.05
xs, ys, yaws, modes, lengths = reeds_shepp_path_planning(start_x, start_y,
start_yaw, end_x,
end_y, end_yaw,
curvature,
step_size)
if not xs:
assert False, "No path"
if show_animation: # pragma: no cover
plt.cla()
plt.plot(xs, ys, label="final course " + str(modes))
print(f"{lengths=}")
# plotting
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.show()
if __name__ == '__main__':
main()