mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-12 05:18:06 -05:00
* switched to using utils.angle_mod() * switched to using utils.angle_mod() * renamed mod2pi to pi_2_pi * Removed linting errors * switched to using utils.angle_mod() * switched to using utils.angle_mod() * renamed mod2pi to pi_2_pi * Removed linting errors * annotation changes and round precision * Reverted to mod2pi --------- Co-authored-by: Videh Patel <videh.patel@fluxauto.xyz>
323 lines
8.1 KiB
Python
323 lines
8.1 KiB
Python
"""
|
|
|
|
Graph based SLAM example
|
|
|
|
author: Atsushi Sakai (@Atsushi_twi)
|
|
|
|
Ref
|
|
|
|
[A Tutorial on Graph-Based SLAM]
|
|
(http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf)
|
|
|
|
"""
|
|
import sys
|
|
import pathlib
|
|
sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
|
|
|
|
import copy
|
|
import itertools
|
|
import math
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from scipy.spatial.transform import Rotation as Rot
|
|
from utils.angle import angle_mod
|
|
|
|
# Simulation parameter
|
|
Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2
|
|
R_sim = np.diag([0.1, np.deg2rad(10.0)]) ** 2
|
|
|
|
DT = 2.0 # time tick [s]
|
|
SIM_TIME = 100.0 # simulation time [s]
|
|
MAX_RANGE = 30.0 # maximum observation range
|
|
STATE_SIZE = 3 # State size [x,y,yaw]
|
|
|
|
# Covariance parameter of Graph Based SLAM
|
|
C_SIGMA1 = 0.1
|
|
C_SIGMA2 = 0.1
|
|
C_SIGMA3 = np.deg2rad(1.0)
|
|
|
|
MAX_ITR = 20 # Maximum iteration
|
|
|
|
show_graph_d_time = 20.0 # [s]
|
|
show_animation = True
|
|
|
|
|
|
class Edge:
|
|
|
|
def __init__(self):
|
|
self.e = np.zeros((3, 1))
|
|
self.omega = np.zeros((3, 3)) # information matrix
|
|
self.d1 = 0.0
|
|
self.d2 = 0.0
|
|
self.yaw1 = 0.0
|
|
self.yaw2 = 0.0
|
|
self.angle1 = 0.0
|
|
self.angle2 = 0.0
|
|
self.id1 = 0
|
|
self.id2 = 0
|
|
|
|
|
|
def cal_observation_sigma():
|
|
sigma = np.zeros((3, 3))
|
|
sigma[0, 0] = C_SIGMA1 ** 2
|
|
sigma[1, 1] = C_SIGMA2 ** 2
|
|
sigma[2, 2] = C_SIGMA3 ** 2
|
|
|
|
return sigma
|
|
|
|
|
|
def calc_3d_rotational_matrix(angle):
|
|
return Rot.from_euler('z', angle).as_matrix()
|
|
|
|
|
|
def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
|
|
angle1, d2, angle2, t1, t2):
|
|
edge = Edge()
|
|
|
|
tangle1 = pi_2_pi(yaw1 + angle1)
|
|
tangle2 = pi_2_pi(yaw2 + angle2)
|
|
tmp1 = d1 * math.cos(tangle1)
|
|
tmp2 = d2 * math.cos(tangle2)
|
|
tmp3 = d1 * math.sin(tangle1)
|
|
tmp4 = d2 * math.sin(tangle2)
|
|
|
|
edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
|
|
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
|
|
edge.e[2, 0] = 0
|
|
|
|
Rt1 = calc_3d_rotational_matrix(tangle1)
|
|
Rt2 = calc_3d_rotational_matrix(tangle2)
|
|
|
|
sig1 = cal_observation_sigma()
|
|
sig2 = cal_observation_sigma()
|
|
|
|
edge.omega = np.linalg.inv(Rt1 @ sig1 @ Rt1.T + Rt2 @ sig2 @ Rt2.T)
|
|
|
|
edge.d1, edge.d2 = d1, d2
|
|
edge.yaw1, edge.yaw2 = yaw1, yaw2
|
|
edge.angle1, edge.angle2 = angle1, angle2
|
|
edge.id1, edge.id2 = t1, t2
|
|
|
|
return edge
|
|
|
|
|
|
def calc_edges(x_list, z_list):
|
|
edges = []
|
|
cost = 0.0
|
|
z_ids = list(itertools.combinations(range(len(z_list)), 2))
|
|
|
|
for (t1, t2) in z_ids:
|
|
x1, y1, yaw1 = x_list[0, t1], x_list[1, t1], x_list[2, t1]
|
|
x2, y2, yaw2 = x_list[0, t2], x_list[1, t2], x_list[2, t2]
|
|
|
|
if z_list[t1] is None or z_list[t2] is None:
|
|
continue # No observation
|
|
|
|
for iz1 in range(len(z_list[t1][:, 0])):
|
|
for iz2 in range(len(z_list[t2][:, 0])):
|
|
if z_list[t1][iz1, 3] == z_list[t2][iz2, 3]:
|
|
d1 = z_list[t1][iz1, 0]
|
|
angle1, _ = z_list[t1][iz1, 1], z_list[t1][iz1, 2]
|
|
d2 = z_list[t2][iz2, 0]
|
|
angle2, _ = z_list[t2][iz2, 1], z_list[t2][iz2, 2]
|
|
|
|
edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
|
|
angle1, d2, angle2, t1, t2)
|
|
|
|
edges.append(edge)
|
|
cost += (edge.e.T @ edge.omega @ edge.e)[0, 0]
|
|
|
|
print("cost:", cost, ",n_edge:", len(edges))
|
|
return edges
|
|
|
|
|
|
def calc_jacobian(edge):
|
|
t1 = edge.yaw1 + edge.angle1
|
|
A = np.array([[-1.0, 0, edge.d1 * math.sin(t1)],
|
|
[0, -1.0, -edge.d1 * math.cos(t1)],
|
|
[0, 0, 0]])
|
|
|
|
t2 = edge.yaw2 + edge.angle2
|
|
B = np.array([[1.0, 0, -edge.d2 * math.sin(t2)],
|
|
[0, 1.0, edge.d2 * math.cos(t2)],
|
|
[0, 0, 0]])
|
|
|
|
return A, B
|
|
|
|
|
|
def fill_H_and_b(H, b, edge):
|
|
A, B = calc_jacobian(edge)
|
|
|
|
id1 = edge.id1 * STATE_SIZE
|
|
id2 = edge.id2 * STATE_SIZE
|
|
|
|
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T @ edge.omega @ A
|
|
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T @ edge.omega @ B
|
|
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T @ edge.omega @ A
|
|
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T @ edge.omega @ B
|
|
|
|
b[id1:id1 + STATE_SIZE] += (A.T @ edge.omega @ edge.e)
|
|
b[id2:id2 + STATE_SIZE] += (B.T @ edge.omega @ edge.e)
|
|
|
|
return H, b
|
|
|
|
|
|
def graph_based_slam(x_init, hz):
|
|
print("start graph based slam")
|
|
|
|
z_list = copy.deepcopy(hz)
|
|
|
|
x_opt = copy.deepcopy(x_init)
|
|
nt = x_opt.shape[1]
|
|
n = nt * STATE_SIZE
|
|
|
|
for itr in range(MAX_ITR):
|
|
edges = calc_edges(x_opt, z_list)
|
|
|
|
H = np.zeros((n, n))
|
|
b = np.zeros((n, 1))
|
|
|
|
for edge in edges:
|
|
H, b = fill_H_and_b(H, b, edge)
|
|
|
|
# to fix origin
|
|
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)
|
|
|
|
dx = - np.linalg.inv(H) @ b
|
|
|
|
for i in range(nt):
|
|
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
|
|
|
|
diff = (dx.T @ dx)[0, 0]
|
|
print("iteration: %d, diff: %f" % (itr + 1, diff))
|
|
if diff < 1.0e-5:
|
|
break
|
|
|
|
return x_opt
|
|
|
|
|
|
def calc_input():
|
|
v = 1.0 # [m/s]
|
|
yaw_rate = 0.1 # [rad/s]
|
|
u = np.array([[v, yaw_rate]]).T
|
|
return u
|
|
|
|
|
|
def observation(xTrue, xd, u, RFID):
|
|
xTrue = motion_model(xTrue, u)
|
|
|
|
# add noise to gps x-y
|
|
z = np.zeros((0, 4))
|
|
|
|
for i in range(len(RFID[:, 0])):
|
|
|
|
dx = RFID[i, 0] - xTrue[0, 0]
|
|
dy = RFID[i, 1] - xTrue[1, 0]
|
|
d = math.hypot(dx, dy)
|
|
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
|
|
phi = pi_2_pi(math.atan2(dy, dx))
|
|
if d <= MAX_RANGE:
|
|
dn = d + np.random.randn() * Q_sim[0, 0] # add noise
|
|
angle_noise = np.random.randn() * Q_sim[1, 1]
|
|
angle += angle_noise
|
|
phi += angle_noise
|
|
zi = np.array([dn, angle, phi, i])
|
|
z = np.vstack((z, zi))
|
|
|
|
# add noise to input
|
|
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0]
|
|
ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1]
|
|
ud = np.array([[ud1, ud2]]).T
|
|
|
|
xd = motion_model(xd, ud)
|
|
|
|
return xTrue, z, xd, ud
|
|
|
|
|
|
def motion_model(x, u):
|
|
F = np.array([[1.0, 0, 0],
|
|
[0, 1.0, 0],
|
|
[0, 0, 1.0]])
|
|
|
|
B = np.array([[DT * math.cos(x[2, 0]), 0],
|
|
[DT * math.sin(x[2, 0]), 0],
|
|
[0.0, DT]])
|
|
|
|
x = F @ x + B @ u
|
|
|
|
return x
|
|
|
|
|
|
def pi_2_pi(angle):
|
|
return angle_mod(angle)
|
|
|
|
|
|
def main():
|
|
print(__file__ + " start!!")
|
|
|
|
time = 0.0
|
|
|
|
# RFID positions [x, y, yaw]
|
|
RFID = np.array([[10.0, -2.0, 0.0],
|
|
[15.0, 10.0, 0.0],
|
|
[3.0, 15.0, 0.0],
|
|
[-5.0, 20.0, 0.0],
|
|
[-5.0, 5.0, 0.0]
|
|
])
|
|
|
|
# State Vector [x y yaw v]'
|
|
xTrue = np.zeros((STATE_SIZE, 1))
|
|
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
|
|
|
|
# history
|
|
hxTrue = []
|
|
hxDR = []
|
|
hz = []
|
|
d_time = 0.0
|
|
init = False
|
|
while SIM_TIME >= time:
|
|
|
|
if not init:
|
|
hxTrue = xTrue
|
|
hxDR = xTrue
|
|
init = True
|
|
else:
|
|
hxDR = np.hstack((hxDR, xDR))
|
|
hxTrue = np.hstack((hxTrue, xTrue))
|
|
|
|
time += DT
|
|
d_time += DT
|
|
u = calc_input()
|
|
|
|
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
|
|
|
hz.append(z)
|
|
|
|
if d_time >= show_graph_d_time:
|
|
x_opt = graph_based_slam(hxDR, hz)
|
|
d_time = 0.0
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.cla()
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
|
|
|
|
plt.plot(hxTrue[0, :].flatten(),
|
|
hxTrue[1, :].flatten(), "-b")
|
|
plt.plot(hxDR[0, :].flatten(),
|
|
hxDR[1, :].flatten(), "-k")
|
|
plt.plot(x_opt[0, :].flatten(),
|
|
x_opt[1, :].flatten(), "-r")
|
|
plt.axis("equal")
|
|
plt.grid(True)
|
|
plt.title("Time" + str(time)[0:5])
|
|
plt.pause(1.0)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|