Files
PythonRobotics/SLAM/GraphBasedSLAM/graph_based_slam.py
Videh Patel cc3fd0c55e Using util.angle_mod in all codes. #684 (#946)
* switched to using utils.angle_mod()

* switched to using utils.angle_mod()

* renamed mod2pi to pi_2_pi

* Removed linting errors

* switched to using utils.angle_mod()

* switched to using utils.angle_mod()

* renamed mod2pi to pi_2_pi

* Removed linting errors

* annotation changes and round precision

* Reverted to mod2pi

---------

Co-authored-by: Videh Patel <videh.patel@fluxauto.xyz>
2024-01-02 22:39:48 +09:00

323 lines
8.1 KiB
Python

"""
Graph based SLAM example
author: Atsushi Sakai (@Atsushi_twi)
Ref
[A Tutorial on Graph-Based SLAM]
(http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf)
"""
import sys
import pathlib
sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
import copy
import itertools
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot
from utils.angle import angle_mod
# Simulation parameter
Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2
R_sim = np.diag([0.1, np.deg2rad(10.0)]) ** 2
DT = 2.0 # time tick [s]
SIM_TIME = 100.0 # simulation time [s]
MAX_RANGE = 30.0 # maximum observation range
STATE_SIZE = 3 # State size [x,y,yaw]
# Covariance parameter of Graph Based SLAM
C_SIGMA1 = 0.1
C_SIGMA2 = 0.1
C_SIGMA3 = np.deg2rad(1.0)
MAX_ITR = 20 # Maximum iteration
show_graph_d_time = 20.0 # [s]
show_animation = True
class Edge:
def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d1 = 0.0
self.d2 = 0.0
self.yaw1 = 0.0
self.yaw2 = 0.0
self.angle1 = 0.0
self.angle2 = 0.0
self.id1 = 0
self.id2 = 0
def cal_observation_sigma():
sigma = np.zeros((3, 3))
sigma[0, 0] = C_SIGMA1 ** 2
sigma[1, 1] = C_SIGMA2 ** 2
sigma[2, 2] = C_SIGMA3 ** 2
return sigma
def calc_3d_rotational_matrix(angle):
return Rot.from_euler('z', angle).as_matrix()
def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2):
edge = Edge()
tangle1 = pi_2_pi(yaw1 + angle1)
tangle2 = pi_2_pi(yaw2 + angle2)
tmp1 = d1 * math.cos(tangle1)
tmp2 = d2 * math.cos(tangle2)
tmp3 = d1 * math.sin(tangle1)
tmp4 = d2 * math.sin(tangle2)
edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
edge.e[2, 0] = 0
Rt1 = calc_3d_rotational_matrix(tangle1)
Rt2 = calc_3d_rotational_matrix(tangle2)
sig1 = cal_observation_sigma()
sig2 = cal_observation_sigma()
edge.omega = np.linalg.inv(Rt1 @ sig1 @ Rt1.T + Rt2 @ sig2 @ Rt2.T)
edge.d1, edge.d2 = d1, d2
edge.yaw1, edge.yaw2 = yaw1, yaw2
edge.angle1, edge.angle2 = angle1, angle2
edge.id1, edge.id2 = t1, t2
return edge
def calc_edges(x_list, z_list):
edges = []
cost = 0.0
z_ids = list(itertools.combinations(range(len(z_list)), 2))
for (t1, t2) in z_ids:
x1, y1, yaw1 = x_list[0, t1], x_list[1, t1], x_list[2, t1]
x2, y2, yaw2 = x_list[0, t2], x_list[1, t2], x_list[2, t2]
if z_list[t1] is None or z_list[t2] is None:
continue # No observation
for iz1 in range(len(z_list[t1][:, 0])):
for iz2 in range(len(z_list[t2][:, 0])):
if z_list[t1][iz1, 3] == z_list[t2][iz2, 3]:
d1 = z_list[t1][iz1, 0]
angle1, _ = z_list[t1][iz1, 1], z_list[t1][iz1, 2]
d2 = z_list[t2][iz2, 0]
angle2, _ = z_list[t2][iz2, 1], z_list[t2][iz2, 2]
edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2)
edges.append(edge)
cost += (edge.e.T @ edge.omega @ edge.e)[0, 0]
print("cost:", cost, ",n_edge:", len(edges))
return edges
def calc_jacobian(edge):
t1 = edge.yaw1 + edge.angle1
A = np.array([[-1.0, 0, edge.d1 * math.sin(t1)],
[0, -1.0, -edge.d1 * math.cos(t1)],
[0, 0, 0]])
t2 = edge.yaw2 + edge.angle2
B = np.array([[1.0, 0, -edge.d2 * math.sin(t2)],
[0, 1.0, edge.d2 * math.cos(t2)],
[0, 0, 0]])
return A, B
def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge)
id1 = edge.id1 * STATE_SIZE
id2 = edge.id2 * STATE_SIZE
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T @ edge.omega @ A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T @ edge.omega @ B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T @ edge.omega @ A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T @ edge.omega @ B
b[id1:id1 + STATE_SIZE] += (A.T @ edge.omega @ edge.e)
b[id2:id2 + STATE_SIZE] += (B.T @ edge.omega @ edge.e)
return H, b
def graph_based_slam(x_init, hz):
print("start graph based slam")
z_list = copy.deepcopy(hz)
x_opt = copy.deepcopy(x_init)
nt = x_opt.shape[1]
n = nt * STATE_SIZE
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, z_list)
H = np.zeros((n, n))
b = np.zeros((n, 1))
for edge in edges:
H, b = fill_H_and_b(H, b, edge)
# to fix origin
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)
dx = - np.linalg.inv(H) @ b
for i in range(nt):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
diff = (dx.T @ dx)[0, 0]
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break
return x_opt
def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.zeros((0, 4))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy)
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = pi_2_pi(math.atan2(dy, dx))
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] # add noise
angle_noise = np.random.randn() * Q_sim[1, 1]
angle += angle_noise
phi += angle_noise
zi = np.array([dn, angle, phi, i])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0]
ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1]
ud = np.array([[ud1, ud2]]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F @ x + B @ u
return x
def pi_2_pi(angle):
return angle_mod(angle)
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0],
[-5.0, 5.0, 0.0]
])
# State Vector [x y yaw v]'
xTrue = np.zeros((STATE_SIZE, 1))
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxTrue = []
hxDR = []
hz = []
d_time = 0.0
init = False
while SIM_TIME >= time:
if not init:
hxTrue = xTrue
hxDR = xTrue
init = True
else:
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
time += DT
d_time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
hz.append(z)
if d_time >= show_graph_d_time:
x_opt = graph_based_slam(hxDR, hz)
d_time = 0.0
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(hxTrue[0, :].flatten(),
hxTrue[1, :].flatten(), "-b")
plt.plot(hxDR[0, :].flatten(),
hxDR[1, :].flatten(), "-k")
plt.plot(x_opt[0, :].flatten(),
x_opt[1, :].flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.title("Time" + str(time)[0:5])
plt.pause(1.0)
if __name__ == '__main__':
main()