mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 13:48:10 -05:00
This commit adds "Code Link" sections to documentation across various path planning modules, linking to relevant class and function APIs. Additionally, several class renaming changes were made, such as `Dijkstra` to `DijkstraPlanner` and `eta3_trajectory` to `Eta3SplineTrajectory`, to enhance naming consistency. Minor fixes include file restructuring and image renaming for the RRT module.
636 lines
23 KiB
Python
636 lines
23 KiB
Python
"""
|
|
Batch Informed Trees based path planning:
|
|
Uses a heuristic to efficiently search increasingly dense
|
|
RGGs while reusing previous information. Provides faster
|
|
convergence that RRT*, Informed RRT* and other sampling based
|
|
methods.
|
|
|
|
Uses lazy connecting by combining sampling based methods and A*
|
|
like incremental graph search algorithms.
|
|
|
|
author: Karan Chawla(@karanchawla)
|
|
Atsushi Sakai(@Atsushi_twi)
|
|
|
|
Reference: https://arxiv.org/abs/1405.5848
|
|
"""
|
|
|
|
import math
|
|
import random
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
show_animation = True
|
|
|
|
|
|
class RTree:
|
|
# Class to represent the explicit tree created
|
|
# while sampling through the state space
|
|
|
|
def __init__(self, start=None, lowerLimit=None, upperLimit=None,
|
|
resolution=1.0):
|
|
|
|
if upperLimit is None:
|
|
upperLimit = [10, 10]
|
|
if lowerLimit is None:
|
|
lowerLimit = [0, 0]
|
|
if start is None:
|
|
start = [0, 0]
|
|
self.vertices = dict()
|
|
self.edges = []
|
|
self.start = start
|
|
self.lowerLimit = lowerLimit
|
|
self.upperLimit = upperLimit
|
|
self.dimension = len(lowerLimit)
|
|
self.num_cells = [0] * self.dimension
|
|
self.resolution = resolution
|
|
# compute the number of grid cells based on the limits and
|
|
# resolution given
|
|
for idx in range(self.dimension):
|
|
self.num_cells[idx] = np.ceil(
|
|
(upperLimit[idx] - lowerLimit[idx]) / resolution)
|
|
|
|
vertex_id = self.real_world_to_node_id(start)
|
|
self.vertices[vertex_id] = []
|
|
|
|
@staticmethod
|
|
def get_root_id():
|
|
# return the id of the root of the tree
|
|
return 0
|
|
|
|
def add_vertex(self, vertex):
|
|
# add a vertex to the tree
|
|
vertex_id = self.real_world_to_node_id(vertex)
|
|
self.vertices[vertex_id] = []
|
|
return vertex_id
|
|
|
|
def add_edge(self, v, x):
|
|
# create an edge between v and x vertices
|
|
if (v, x) not in self.edges:
|
|
self.edges.append((v, x))
|
|
# since the tree is undirected
|
|
self.vertices[v].append(x)
|
|
self.vertices[x].append(v)
|
|
|
|
def real_coords_to_grid_coord(self, real_coord):
|
|
# convert real world coordinates to grid space
|
|
# depends on the resolution of the grid
|
|
# the output is the same as real world coords if the resolution
|
|
# is set to 1
|
|
coord = [0] * self.dimension
|
|
for i in range(len(coord)):
|
|
start = self.lowerLimit[i] # start of the grid space
|
|
coord[i] = int(np.around((real_coord[i] - start) / self.resolution))
|
|
return coord
|
|
|
|
def grid_coordinate_to_node_id(self, coord):
|
|
# This function maps a grid coordinate to a unique
|
|
# node id
|
|
nodeId = 0
|
|
for i in range(len(coord) - 1, -1, -1):
|
|
product = 1
|
|
for j in range(0, i):
|
|
product = product * self.num_cells[j]
|
|
nodeId = nodeId + coord[i] * product
|
|
return nodeId
|
|
|
|
def real_world_to_node_id(self, real_coord):
|
|
# first convert the given coordinates to grid space and then
|
|
# convert the grid space coordinates to a unique node id
|
|
return self.grid_coordinate_to_node_id(
|
|
self.real_coords_to_grid_coord(real_coord))
|
|
|
|
def grid_coord_to_real_world_coord(self, coord):
|
|
# This function maps a grid coordinate in discrete space
|
|
# to a configuration in the full configuration space
|
|
config = [0] * self.dimension
|
|
for i in range(0, len(coord)):
|
|
# start of the real world / configuration space
|
|
start = self.lowerLimit[i]
|
|
# step from the coordinate in the grid
|
|
grid_step = self.resolution * coord[i]
|
|
config[i] = start + grid_step
|
|
return config
|
|
|
|
def node_id_to_grid_coord(self, node_id):
|
|
# This function maps a node id to the associated
|
|
# grid coordinate
|
|
coord = [0] * len(self.lowerLimit)
|
|
for i in range(len(coord) - 1, -1, -1):
|
|
# Get the product of the grid space maximums
|
|
prod = 1
|
|
for j in range(0, i):
|
|
prod = prod * self.num_cells[j]
|
|
coord[i] = np.floor(node_id / prod)
|
|
node_id = node_id - (coord[i] * prod)
|
|
return coord
|
|
|
|
def node_id_to_real_world_coord(self, nid):
|
|
# This function maps a node in discrete space to a configuration
|
|
# in the full configuration space
|
|
return self.grid_coord_to_real_world_coord(
|
|
self.node_id_to_grid_coord(nid))
|
|
|
|
|
|
class BITStar:
|
|
|
|
def __init__(self, start, goal,
|
|
obstacleList, randArea, eta=2.0,
|
|
maxIter=80):
|
|
self.start = start
|
|
self.goal = goal
|
|
|
|
self.min_rand = randArea[0]
|
|
self.max_rand = randArea[1]
|
|
self.max_iIter = maxIter
|
|
self.obstacleList = obstacleList
|
|
self.startId = None
|
|
self.goalId = None
|
|
|
|
self.vertex_queue = []
|
|
self.edge_queue = []
|
|
self.samples = dict()
|
|
self.g_scores = dict()
|
|
self.f_scores = dict()
|
|
self.nodes = dict()
|
|
self.r = float('inf')
|
|
self.eta = eta # tunable parameter
|
|
self.unit_ball_measure = 1
|
|
self.old_vertices = []
|
|
|
|
# initialize tree
|
|
lowerLimit = [randArea[0], randArea[0]]
|
|
upperLimit = [randArea[1], randArea[1]]
|
|
self.tree = RTree(start=start, lowerLimit=lowerLimit,
|
|
upperLimit=upperLimit, resolution=0.01)
|
|
|
|
def setup_planning(self):
|
|
self.startId = self.tree.real_world_to_node_id(self.start)
|
|
self.goalId = self.tree.real_world_to_node_id(self.goal)
|
|
|
|
# add goal to the samples
|
|
self.samples[self.goalId] = self.goal
|
|
self.g_scores[self.goalId] = float('inf')
|
|
self.f_scores[self.goalId] = 0
|
|
|
|
# add the start id to the tree
|
|
self.tree.add_vertex(self.start)
|
|
self.g_scores[self.startId] = 0
|
|
self.f_scores[self.startId] = self.compute_heuristic_cost(
|
|
self.startId, self.goalId)
|
|
|
|
# max length we expect to find in our 'informed' sample space, starts as infinite
|
|
cBest = self.g_scores[self.goalId]
|
|
|
|
# Computing the sampling space
|
|
cMin = math.hypot(self.start[0] - self.goal[0],
|
|
self.start[1] - self.goal[1]) / 1.5
|
|
xCenter = np.array([[(self.start[0] + self.goal[0]) / 2.0],
|
|
[(self.start[1] + self.goal[1]) / 2.0], [0]])
|
|
a1 = np.array([[(self.goal[0] - self.start[0]) / cMin],
|
|
[(self.goal[1] - self.start[1]) / cMin], [0]])
|
|
eTheta = math.atan2(a1[1, 0], a1[0, 0])
|
|
# first column of identity matrix transposed
|
|
id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3)
|
|
M = np.dot(a1, id1_t)
|
|
U, S, Vh = np.linalg.svd(M, True, True)
|
|
C = np.dot(np.dot(U, np.diag(
|
|
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])),
|
|
Vh)
|
|
|
|
self.samples.update(self.informed_sample(
|
|
200, cBest, cMin, xCenter, C))
|
|
|
|
return eTheta, cMin, xCenter, C, cBest
|
|
|
|
def setup_sample(self, iterations, foundGoal, cMin, xCenter, C, cBest):
|
|
|
|
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
|
|
print("Batch: ", iterations)
|
|
# Using informed rrt star way of computing the samples
|
|
self.r = 2.0
|
|
if iterations != 0:
|
|
if foundGoal:
|
|
# a better way to do this would be to make number of samples
|
|
# a function of cMin
|
|
m = 200
|
|
self.samples = dict()
|
|
self.samples[self.goalId] = self.goal
|
|
else:
|
|
m = 100
|
|
cBest = self.g_scores[self.goalId]
|
|
self.samples.update(self.informed_sample(
|
|
m, cBest, cMin, xCenter, C))
|
|
|
|
# make the old vertices the new vertices
|
|
self.old_vertices += self.tree.vertices.keys()
|
|
# add the vertices to the vertex queue
|
|
for nid in self.tree.vertices.keys():
|
|
if nid not in self.vertex_queue:
|
|
self.vertex_queue.append(nid)
|
|
return cBest
|
|
|
|
def plan(self, animation=True):
|
|
|
|
eTheta, cMin, xCenter, C, cBest = self.setup_planning()
|
|
iterations = 0
|
|
|
|
foundGoal = False
|
|
# run until done
|
|
while iterations < self.max_iIter:
|
|
cBest = self.setup_sample(iterations,
|
|
foundGoal, cMin, xCenter, C, cBest)
|
|
# expand the best vertices until an edge is better than the vertex
|
|
# this is done because the vertex cost represents the lower bound
|
|
# on the edge cost
|
|
while self.best_vertex_queue_value() <= \
|
|
self.best_edge_queue_value():
|
|
self.expand_vertex(self.best_in_vertex_queue())
|
|
|
|
# add the best edge to the tree
|
|
bestEdge = self.best_in_edge_queue()
|
|
self.edge_queue.remove(bestEdge)
|
|
|
|
# Check if this can improve the current solution
|
|
estimatedCostOfVertex = self.g_scores[bestEdge[
|
|
0]] + self.compute_distance_cost(
|
|
bestEdge[0], bestEdge[1]) + self.compute_heuristic_cost(
|
|
bestEdge[1], self.goalId)
|
|
estimatedCostOfEdge = self.compute_distance_cost(
|
|
self.startId, bestEdge[0]) + self.compute_heuristic_cost(
|
|
bestEdge[0], bestEdge[1]) + self.compute_heuristic_cost(
|
|
bestEdge[1], self.goalId)
|
|
actualCostOfEdge = self.g_scores[
|
|
bestEdge[0]] + self.compute_distance_cost(
|
|
bestEdge[0], bestEdge[1])
|
|
|
|
f1 = estimatedCostOfVertex < self.g_scores[self.goalId]
|
|
f2 = estimatedCostOfEdge < self.g_scores[self.goalId]
|
|
f3 = actualCostOfEdge < self.g_scores[self.goalId]
|
|
|
|
if f1 and f2 and f3:
|
|
# connect this edge
|
|
firstCoord = self.tree.node_id_to_real_world_coord(
|
|
bestEdge[0])
|
|
secondCoord = self.tree.node_id_to_real_world_coord(
|
|
bestEdge[1])
|
|
path = self.connect(firstCoord, secondCoord)
|
|
lastEdge = self.tree.real_world_to_node_id(secondCoord)
|
|
if path is None or len(path) == 0:
|
|
continue
|
|
nextCoord = path[len(path) - 1, :]
|
|
nextCoordPathId = self.tree.real_world_to_node_id(
|
|
nextCoord)
|
|
bestEdge = (bestEdge[0], nextCoordPathId)
|
|
if bestEdge[1] in self.tree.vertices.keys():
|
|
continue
|
|
else:
|
|
try:
|
|
del self.samples[bestEdge[1]]
|
|
except KeyError:
|
|
# invalid sample key
|
|
pass
|
|
eid = self.tree.add_vertex(nextCoord)
|
|
self.vertex_queue.append(eid)
|
|
if eid == self.goalId or bestEdge[0] == self.goalId or \
|
|
bestEdge[1] == self.goalId:
|
|
print("Goal found")
|
|
foundGoal = True
|
|
|
|
self.tree.add_edge(bestEdge[0], bestEdge[1])
|
|
|
|
g_score = self.compute_distance_cost(
|
|
bestEdge[0], bestEdge[1])
|
|
self.g_scores[bestEdge[1]] = g_score + self.g_scores[
|
|
bestEdge[0]]
|
|
self.f_scores[
|
|
bestEdge[1]] = g_score + self.compute_heuristic_cost(
|
|
bestEdge[1], self.goalId)
|
|
self.update_graph()
|
|
|
|
# visualize new edge
|
|
if animation:
|
|
self.draw_graph(xCenter=xCenter, cBest=cBest,
|
|
cMin=cMin, eTheta=eTheta,
|
|
samples=self.samples.values(),
|
|
start=firstCoord, end=secondCoord)
|
|
|
|
self.remove_queue(lastEdge, bestEdge)
|
|
|
|
else:
|
|
print("Nothing good")
|
|
self.edge_queue = []
|
|
self.vertex_queue = []
|
|
|
|
iterations += 1
|
|
|
|
print("Finding the path")
|
|
return self.find_final_path()
|
|
|
|
def find_final_path(self):
|
|
plan = [self.goal]
|
|
currId = self.goalId
|
|
while currId != self.startId:
|
|
plan.append(self.tree.node_id_to_real_world_coord(currId))
|
|
try:
|
|
currId = self.nodes[currId]
|
|
except KeyError:
|
|
print("cannot find Path")
|
|
return []
|
|
|
|
plan.append(self.start)
|
|
plan = plan[::-1] # reverse the plan
|
|
|
|
return plan
|
|
|
|
def remove_queue(self, lastEdge, bestEdge):
|
|
for edge in self.edge_queue:
|
|
if edge[1] == bestEdge[1]:
|
|
dist_cost = self.compute_distance_cost(edge[1], bestEdge[1])
|
|
if self.g_scores[edge[1]] + dist_cost >= \
|
|
self.g_scores[self.goalId]:
|
|
if (lastEdge, bestEdge[1]) in self.edge_queue:
|
|
self.edge_queue.remove(
|
|
(lastEdge, bestEdge[1]))
|
|
|
|
def connect(self, start, end):
|
|
# A function which attempts to extend from a start coordinates
|
|
# to goal coordinates
|
|
steps = int(self.compute_distance_cost(
|
|
self.tree.real_world_to_node_id(start),
|
|
self.tree.real_world_to_node_id(end)) * 10)
|
|
x = np.linspace(start[0], end[0], num=steps)
|
|
y = np.linspace(start[1], end[1], num=steps)
|
|
for i in range(len(x)):
|
|
if self._collision_check(x[i], y[i]):
|
|
if i == 0:
|
|
return None
|
|
# if collision, send path until collision
|
|
return np.vstack((x[0:i], y[0:i])).transpose()
|
|
|
|
return np.vstack((x, y)).transpose()
|
|
|
|
def _collision_check(self, x, y):
|
|
for (ox, oy, size) in self.obstacleList:
|
|
dx = ox - x
|
|
dy = oy - y
|
|
d = dx * dx + dy * dy
|
|
if d <= size ** 2:
|
|
return True # collision
|
|
return False
|
|
|
|
def compute_heuristic_cost(self, start_id, goal_id):
|
|
# Using Manhattan distance as heuristic
|
|
start = np.array(self.tree.node_id_to_real_world_coord(start_id))
|
|
goal = np.array(self.tree.node_id_to_real_world_coord(goal_id))
|
|
|
|
return np.linalg.norm(start - goal, 2)
|
|
|
|
def compute_distance_cost(self, vid, xid):
|
|
# L2 norm distance
|
|
start = np.array(self.tree.node_id_to_real_world_coord(vid))
|
|
stop = np.array(self.tree.node_id_to_real_world_coord(xid))
|
|
|
|
return np.linalg.norm(stop - start, 2)
|
|
|
|
# Sample free space confined in the radius of ball R
|
|
def informed_sample(self, m, cMax, cMin, xCenter, C):
|
|
samples = dict()
|
|
print("g_Score goal id: ", self.g_scores[self.goalId])
|
|
for i in range(m + 1):
|
|
if cMax < float('inf'):
|
|
r = [cMax / 2.0,
|
|
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0,
|
|
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0]
|
|
L = np.diag(r)
|
|
xBall = self.sample_unit_ball()
|
|
rnd = np.dot(np.dot(C, L), xBall) + xCenter
|
|
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
|
|
random_id = self.tree.real_world_to_node_id(rnd)
|
|
samples[random_id] = rnd
|
|
else:
|
|
rnd = self.sample_free_space()
|
|
random_id = self.tree.real_world_to_node_id(rnd)
|
|
samples[random_id] = rnd
|
|
return samples
|
|
|
|
# Sample point in a unit ball
|
|
@staticmethod
|
|
def sample_unit_ball():
|
|
a = random.random()
|
|
b = random.random()
|
|
|
|
if b < a:
|
|
a, b = b, a
|
|
|
|
sample = (b * math.cos(2 * math.pi * a / b),
|
|
b * math.sin(2 * math.pi * a / b))
|
|
return np.array([[sample[0]], [sample[1]], [0]])
|
|
|
|
def sample_free_space(self):
|
|
rnd = [random.uniform(self.min_rand, self.max_rand),
|
|
random.uniform(self.min_rand, self.max_rand)]
|
|
|
|
return rnd
|
|
|
|
def best_vertex_queue_value(self):
|
|
if len(self.vertex_queue) == 0:
|
|
return float('inf')
|
|
values = [self.g_scores[v]
|
|
+ self.compute_heuristic_cost(v, self.goalId) for v in
|
|
self.vertex_queue]
|
|
values.sort()
|
|
return values[0]
|
|
|
|
def best_edge_queue_value(self):
|
|
if len(self.edge_queue) == 0:
|
|
return float('inf')
|
|
# return the best value in the queue by score g_tau[v] + c(v,x) + h(x)
|
|
values = [self.g_scores[e[0]] + self.compute_distance_cost(e[0], e[1])
|
|
+ self.compute_heuristic_cost(e[1], self.goalId) for e in
|
|
self.edge_queue]
|
|
values.sort(reverse=True)
|
|
return values[0]
|
|
|
|
def best_in_vertex_queue(self):
|
|
# return the best value in the vertex queue
|
|
v_plus_values = [(v, self.g_scores[v] +
|
|
self.compute_heuristic_cost(v, self.goalId))
|
|
for v in self.vertex_queue]
|
|
v_plus_values = sorted(v_plus_values, key=lambda x: x[1])
|
|
# print(v_plus_values)
|
|
return v_plus_values[0][0]
|
|
|
|
def best_in_edge_queue(self):
|
|
e_and_values = [
|
|
(e[0], e[1], self.g_scores[e[0]] + self.compute_distance_cost(
|
|
e[0], e[1]) + self.compute_heuristic_cost(e[1], self.goalId))
|
|
for e in self.edge_queue]
|
|
e_and_values = sorted(e_and_values, key=lambda x: x[2])
|
|
|
|
return e_and_values[0][0], e_and_values[0][1]
|
|
|
|
def expand_vertex(self, vid):
|
|
self.vertex_queue.remove(vid)
|
|
|
|
# get the coordinates for given vid
|
|
currCoord = np.array(self.tree.node_id_to_real_world_coord(vid))
|
|
|
|
# get the nearest value in vertex for every one in samples where difference is
|
|
# less than the radius
|
|
neighbors = []
|
|
for sid, s_coord in self.samples.items():
|
|
s_coord = np.array(s_coord)
|
|
if np.linalg.norm(s_coord - currCoord, 2) <= self.r and sid != vid:
|
|
neighbors.append((sid, s_coord))
|
|
|
|
# add an edge to the edge queue is the path might improve the solution
|
|
for neighbor in neighbors:
|
|
sid = neighbor[0]
|
|
h_cost = self.compute_heuristic_cost(sid, self.goalId)
|
|
estimated_f_score = self.compute_distance_cost(
|
|
self.startId, vid) + h_cost + self.compute_distance_cost(vid,
|
|
sid)
|
|
if estimated_f_score < self.g_scores[self.goalId]:
|
|
self.edge_queue.append((vid, sid))
|
|
|
|
# add the vertex to the edge queue
|
|
self.add_vertex_to_edge_queue(vid, currCoord)
|
|
|
|
def add_vertex_to_edge_queue(self, vid, currCoord):
|
|
if vid not in self.old_vertices:
|
|
neighbors = []
|
|
for v, edges in self.tree.vertices.items():
|
|
if v != vid and (v, vid) not in self.edge_queue and \
|
|
(vid, v) not in self.edge_queue:
|
|
v_coord = self.tree.node_id_to_real_world_coord(v)
|
|
if np.linalg.norm(currCoord - v_coord, 2) <= self.r:
|
|
neighbors.append((vid, v_coord))
|
|
|
|
for neighbor in neighbors:
|
|
sid = neighbor[0]
|
|
estimated_f_score = self.compute_distance_cost(
|
|
self.startId, vid) + self.compute_distance_cost(
|
|
vid, sid) + self.compute_heuristic_cost(sid, self.goalId)
|
|
if estimated_f_score < self.g_scores[self.goalId] and (
|
|
self.g_scores[vid] +
|
|
self.compute_distance_cost(vid, sid)) < \
|
|
self.g_scores[sid]:
|
|
self.edge_queue.append((vid, sid))
|
|
|
|
def update_graph(self):
|
|
closedSet = []
|
|
openSet = []
|
|
currId = self.startId
|
|
openSet.append(currId)
|
|
|
|
while len(openSet) != 0:
|
|
# get the element with lowest f_score
|
|
currId = min(openSet, key=lambda x: self.f_scores[x])
|
|
|
|
# remove element from open set
|
|
openSet.remove(currId)
|
|
|
|
# Check if we're at the goal
|
|
if currId == self.goalId:
|
|
break
|
|
|
|
if currId not in closedSet:
|
|
closedSet.append(currId)
|
|
|
|
# find a non visited successor to the current node
|
|
successors = self.tree.vertices[currId]
|
|
for successor in successors:
|
|
if successor in closedSet:
|
|
continue
|
|
else:
|
|
# calculate tentative g score
|
|
g_score = self.g_scores[currId] + \
|
|
self.compute_distance_cost(currId, successor)
|
|
if successor not in openSet:
|
|
# add the successor to open set
|
|
openSet.append(successor)
|
|
elif g_score >= self.g_scores[successor]:
|
|
continue
|
|
|
|
# update g and f scores
|
|
self.g_scores[successor] = g_score
|
|
self.f_scores[
|
|
successor] = g_score + self.compute_heuristic_cost(
|
|
successor, self.goalId)
|
|
|
|
# store the parent and child
|
|
self.nodes[successor] = currId
|
|
|
|
def draw_graph(self, xCenter=None, cBest=None, cMin=None, eTheta=None,
|
|
samples=None, start=None, end=None):
|
|
plt.clf()
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
for rnd in samples:
|
|
if rnd is not None:
|
|
plt.plot(rnd[0], rnd[1], "^k")
|
|
if cBest != float('inf'):
|
|
self.plot_ellipse(xCenter, cBest, cMin, eTheta)
|
|
|
|
if start is not None and end is not None:
|
|
plt.plot([start[0], start[1]], [end[0], end[1]], "-g")
|
|
|
|
for (ox, oy, size) in self.obstacleList:
|
|
plt.plot(ox, oy, "ok", ms=30 * size)
|
|
|
|
plt.plot(self.start[0], self.start[1], "xr")
|
|
plt.plot(self.goal[0], self.goal[1], "xr")
|
|
plt.axis([-2, 15, -2, 15])
|
|
plt.grid(True)
|
|
plt.pause(0.01)
|
|
|
|
@staticmethod
|
|
def plot_ellipse(xCenter, cBest, cMin, eTheta): # pragma: no cover
|
|
|
|
a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0
|
|
b = cBest / 2.0
|
|
angle = math.pi / 2.0 - eTheta
|
|
cx = xCenter[0]
|
|
cy = xCenter[1]
|
|
|
|
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
|
|
x = [a * math.cos(it) for it in t]
|
|
y = [b * math.sin(it) for it in t]
|
|
R = np.array([[math.cos(angle), math.sin(angle)],
|
|
[-math.sin(angle), math.cos(angle)]])
|
|
fx = R @ np.array([x, y])
|
|
px = np.array(fx[0, :] + cx).flatten()
|
|
py = np.array(fx[1, :] + cy).flatten()
|
|
plt.plot(cx, cy, "xc")
|
|
plt.plot(px, py, "--c")
|
|
|
|
|
|
def main(maxIter=80):
|
|
print("Starting Batch Informed Trees Star planning")
|
|
obstacleList = [
|
|
(5, 5, 0.5),
|
|
(9, 6, 1),
|
|
(7, 5, 1),
|
|
(1, 5, 1),
|
|
(3, 6, 1),
|
|
(7, 9, 1)
|
|
]
|
|
|
|
bitStar = BITStar(start=[-1, 0], goal=[3, 8], obstacleList=obstacleList,
|
|
randArea=[-2, 15], maxIter=maxIter)
|
|
path = bitStar.plan(animation=show_animation)
|
|
print("Done")
|
|
|
|
if show_animation:
|
|
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
|
plt.grid(True)
|
|
plt.pause(0.05)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|