mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 04:28:04 -05:00
Updated all instances of "Ref:" to "Reference" for consistency in both code and documentation. This change improves clarity and aligns with standard terminology practices.
362 lines
13 KiB
Python
362 lines
13 KiB
Python
"""
|
|
|
|
eta^3 polynomials planner
|
|
|
|
author: Joe Dinius, Ph.D (https://jwdinius.github.io)
|
|
Atsushi Sakai (@Atsushi_twi)
|
|
|
|
Reference:
|
|
- [eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots]
|
|
(https://ieeexplore.ieee.org/document/4339545/)
|
|
|
|
"""
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from scipy.integrate import quad
|
|
|
|
# NOTE: *_pose is a 3-array:
|
|
# 0 - x coord, 1 - y coord, 2 - orientation angle \theta
|
|
|
|
show_animation = True
|
|
|
|
|
|
class Eta3Path(object):
|
|
"""
|
|
Eta3Path
|
|
|
|
input
|
|
segments: a list of `Eta3PathSegment` instances
|
|
defining a continuous path
|
|
"""
|
|
|
|
def __init__(self, segments):
|
|
# ensure input has the correct form
|
|
assert(isinstance(segments, list) and isinstance(
|
|
segments[0], Eta3PathSegment))
|
|
# ensure that each segment begins from the previous segment's end (continuity)
|
|
for r, s in zip(segments[:-1], segments[1:]):
|
|
assert(np.array_equal(r.end_pose, s.start_pose))
|
|
self.segments = segments
|
|
|
|
def calc_path_point(self, u):
|
|
"""
|
|
Eta3Path::calc_path_point
|
|
|
|
input
|
|
normalized interpolation point along path object, 0 <= u <= len(self.segments)
|
|
returns
|
|
2d (x,y) position vector
|
|
"""
|
|
|
|
assert(0 <= u <= len(self.segments))
|
|
if np.isclose(u, len(self.segments)):
|
|
segment_idx = len(self.segments) - 1
|
|
u = 1.
|
|
else:
|
|
segment_idx = int(np.floor(u))
|
|
u -= segment_idx
|
|
return self.segments[segment_idx].calc_point(u)
|
|
|
|
|
|
class Eta3PathSegment(object):
|
|
"""
|
|
Eta3PathSegment - constructs an eta^3 path segment based on desired
|
|
shaping, eta, and curvature vector, kappa. If either, or both,
|
|
of eta and kappa are not set during initialization,
|
|
they will default to zeros.
|
|
|
|
input
|
|
start_pose - starting pose array (x, y, \theta)
|
|
end_pose - ending pose array (x, y, \theta)
|
|
eta - shaping parameters, default=None
|
|
kappa - curvature parameters, default=None
|
|
"""
|
|
|
|
def __init__(self, start_pose, end_pose, eta=None, kappa=None):
|
|
# make sure inputs are of the correct size
|
|
assert(len(start_pose) == 3 and len(start_pose) == len(end_pose))
|
|
self.start_pose = start_pose
|
|
self.end_pose = end_pose
|
|
# if no eta is passed, initialize it to array of zeros
|
|
if not eta:
|
|
eta = np.zeros((6,))
|
|
else:
|
|
# make sure that eta has correct size
|
|
assert(len(eta) == 6)
|
|
# if no kappa is passed, initialize to array of zeros
|
|
if not kappa:
|
|
kappa = np.zeros((4,))
|
|
else:
|
|
assert(len(kappa) == 4)
|
|
# set up angle cosines and sines for simpler computations below
|
|
ca = np.cos(start_pose[2])
|
|
sa = np.sin(start_pose[2])
|
|
cb = np.cos(end_pose[2])
|
|
sb = np.sin(end_pose[2])
|
|
# 2 dimensions (x,y) x 8 coefficients per dimension
|
|
self.coeffs = np.empty((2, 8))
|
|
# constant terms (u^0)
|
|
self.coeffs[0, 0] = start_pose[0]
|
|
self.coeffs[1, 0] = start_pose[1]
|
|
# linear (u^1)
|
|
self.coeffs[0, 1] = eta[0] * ca
|
|
self.coeffs[1, 1] = eta[0] * sa
|
|
# quadratic (u^2)
|
|
self.coeffs[0, 2] = 1. / 2 * eta[2] * \
|
|
ca - 1. / 2 * eta[0]**2 * kappa[0] * sa
|
|
self.coeffs[1, 2] = 1. / 2 * eta[2] * \
|
|
sa + 1. / 2 * eta[0]**2 * kappa[0] * ca
|
|
# cubic (u^3)
|
|
self.coeffs[0, 3] = 1. / 6 * eta[4] * ca - 1. / 6 * \
|
|
(eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa
|
|
self.coeffs[1, 3] = 1. / 6 * eta[4] * sa + 1. / 6 * \
|
|
(eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca
|
|
# quartic (u^4)
|
|
tmp1 = 35. * (end_pose[0] - start_pose[0])
|
|
tmp2 = (20. * eta[0] + 5 * eta[2] + 2. / 3 * eta[4]) * ca
|
|
tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1]
|
|
+ 2. * eta[0] * eta[2] * kappa[0]) * sa
|
|
tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * cb
|
|
tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 *
|
|
kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb
|
|
self.coeffs[0, 4] = tmp1 - tmp2 + tmp3 - tmp4 - tmp5
|
|
tmp1 = 35. * (end_pose[1] - start_pose[1])
|
|
tmp2 = (20. * eta[0] + 5. * eta[2] + 2. / 3 * eta[4]) * sa
|
|
tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1]
|
|
+ 2. * eta[0] * eta[2] * kappa[0]) * ca
|
|
tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * sb
|
|
tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 *
|
|
kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb
|
|
self.coeffs[1, 4] = tmp1 - tmp2 - tmp3 - tmp4 + tmp5
|
|
# quintic (u^5)
|
|
tmp1 = -84. * (end_pose[0] - start_pose[0])
|
|
tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * ca
|
|
tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. *
|
|
eta[0] * eta[2] * kappa[0]) * sa
|
|
tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * cb
|
|
tmp5 = + (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3]
|
|
- 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb
|
|
self.coeffs[0, 5] = tmp1 + tmp2 - tmp3 + tmp4 + tmp5
|
|
tmp1 = -84. * (end_pose[1] - start_pose[1])
|
|
tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * sa
|
|
tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. *
|
|
eta[0] * eta[2] * kappa[0]) * ca
|
|
tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * sb
|
|
tmp5 = - (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3]
|
|
- 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb
|
|
self.coeffs[1, 5] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
|
|
# sextic (u^6)
|
|
tmp1 = 70. * (end_pose[0] - start_pose[0])
|
|
tmp2 = (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * ca
|
|
tmp3 = + (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 *
|
|
kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa
|
|
tmp4 = (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * cb
|
|
tmp5 = - (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 *
|
|
kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb
|
|
self.coeffs[0, 6] = tmp1 - tmp2 + tmp3 - tmp4 + tmp5
|
|
tmp1 = 70. * (end_pose[1] - start_pose[1])
|
|
tmp2 = - (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * sa
|
|
tmp3 = - (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 *
|
|
kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca
|
|
tmp4 = - (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * sb
|
|
tmp5 = + (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 *
|
|
kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb
|
|
self.coeffs[1, 6] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
|
|
# septic (u^7)
|
|
tmp1 = -20. * (end_pose[0] - start_pose[0])
|
|
tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * ca
|
|
tmp3 = - (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1]
|
|
+ 1. / 2 * eta[0] * eta[2] * kappa[0]) * sa
|
|
tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * cb
|
|
tmp5 = (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3]
|
|
- 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb
|
|
self.coeffs[0, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
|
|
|
|
tmp1 = -20. * (end_pose[1] - start_pose[1])
|
|
tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * sa
|
|
tmp3 = (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1]
|
|
+ 1. / 2 * eta[0] * eta[2] * kappa[0]) * ca
|
|
tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * sb
|
|
tmp5 = - (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3]
|
|
- 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb
|
|
self.coeffs[1, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5
|
|
self.s_dot = lambda u: max(np.linalg.norm(
|
|
self.coeffs[:, 1:].dot(np.array(
|
|
[1, 2. * u, 3. * u**2, 4. * u**3,
|
|
5. * u**4, 6. * u**5, 7. * u**6]))), 1e-6)
|
|
self.f_length = lambda ue: quad(lambda u: self.s_dot(u), 0, ue)
|
|
self.segment_length = self.f_length(1)[0]
|
|
|
|
def calc_point(self, u):
|
|
"""
|
|
Eta3PathSegment::calc_point
|
|
|
|
input
|
|
u - parametric representation of a point along the segment, 0 <= u <= 1
|
|
returns
|
|
(x,y) of point along the segment
|
|
"""
|
|
assert(0 <= u <= 1)
|
|
return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7]))
|
|
|
|
def calc_deriv(self, u, order=1):
|
|
"""
|
|
Eta3PathSegment::calc_deriv
|
|
|
|
input
|
|
u - parametric representation of a point along the segment, 0 <= u <= 1
|
|
returns
|
|
(d^nx/du^n,d^ny/du^n) of point along the segment, for 0 < n <= 2
|
|
"""
|
|
|
|
assert(0 <= u <= 1)
|
|
assert(0 < order <= 2)
|
|
if order == 1:
|
|
return self.coeffs[:, 1:].dot(np.array([1, 2. * u, 3. * u**2, 4. * u**3, 5. * u**4, 6. * u**5, 7. * u**6]))
|
|
|
|
return self.coeffs[:, 2:].dot(np.array([2, 6. * u, 12. * u**2, 20. * u**3, 30. * u**4, 42. * u**5]))
|
|
|
|
|
|
def test1():
|
|
|
|
for i in range(10):
|
|
path_segments = []
|
|
# segment 1: lane-change curve
|
|
start_pose = [0, 0, 0]
|
|
end_pose = [4, 3.0, 0]
|
|
# NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative
|
|
kappa = [0, 0, 0, 0]
|
|
eta = [i, i, 0, 0, 0, 0]
|
|
path_segments.append(Eta3PathSegment(
|
|
start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
|
|
|
|
path = Eta3Path(path_segments)
|
|
|
|
# interpolate at several points along the path
|
|
ui = np.linspace(0, len(path_segments), 1001)
|
|
pos = np.empty((2, ui.size))
|
|
for j, u in enumerate(ui):
|
|
pos[:, j] = path.calc_path_point(u)
|
|
|
|
if show_animation:
|
|
# plot the path
|
|
plt.plot(pos[0, :], pos[1, :])
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
plt.pause(1.0)
|
|
|
|
if show_animation:
|
|
plt.close("all")
|
|
|
|
|
|
def test2():
|
|
|
|
for i in range(10):
|
|
path_segments = []
|
|
# segment 1: lane-change curve
|
|
start_pose = [0, 0, 0]
|
|
end_pose = [4, 3.0, 0]
|
|
# NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative
|
|
kappa = [0, 0, 0, 0]
|
|
eta = [0, 0, (i - 5) * 20, (5 - i) * 20, 0, 0]
|
|
path_segments.append(Eta3PathSegment(
|
|
start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
|
|
|
|
path = Eta3Path(path_segments)
|
|
|
|
# interpolate at several points along the path
|
|
ui = np.linspace(0, len(path_segments), 1001)
|
|
pos = np.empty((2, ui.size))
|
|
for j, u in enumerate(ui):
|
|
pos[:, j] = path.calc_path_point(u)
|
|
|
|
if show_animation:
|
|
# plot the path
|
|
plt.plot(pos[0, :], pos[1, :])
|
|
plt.pause(1.0)
|
|
|
|
if show_animation:
|
|
plt.close("all")
|
|
|
|
|
|
def test3():
|
|
path_segments = []
|
|
|
|
# segment 1: lane-change curve
|
|
start_pose = [0, 0, 0]
|
|
end_pose = [4, 1.5, 0]
|
|
# NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative
|
|
kappa = [0, 0, 0, 0]
|
|
eta = [4.27, 4.27, 0, 0, 0, 0]
|
|
path_segments.append(Eta3PathSegment(
|
|
start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
|
|
|
|
# segment 2: line segment
|
|
start_pose = [4, 1.5, 0]
|
|
end_pose = [5.5, 1.5, 0]
|
|
kappa = [0, 0, 0, 0]
|
|
eta = [0, 0, 0, 0, 0, 0]
|
|
path_segments.append(Eta3PathSegment(
|
|
start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
|
|
|
|
# segment 3: cubic spiral
|
|
start_pose = [5.5, 1.5, 0]
|
|
end_pose = [7.4377, 1.8235, 0.6667]
|
|
kappa = [0, 0, 1, 1]
|
|
eta = [1.88, 1.88, 0, 0, 0, 0]
|
|
path_segments.append(Eta3PathSegment(
|
|
start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
|
|
|
|
# segment 4: generic twirl arc
|
|
start_pose = [7.4377, 1.8235, 0.6667]
|
|
end_pose = [7.8, 4.3, 1.8]
|
|
kappa = [1, 1, 0.5, 0]
|
|
eta = [7, 10, 10, -10, 4, 4]
|
|
path_segments.append(Eta3PathSegment(
|
|
start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
|
|
|
|
# segment 5: circular arc
|
|
start_pose = [7.8, 4.3, 1.8]
|
|
end_pose = [5.4581, 5.8064, 3.3416]
|
|
kappa = [0.5, 0, 0.5, 0]
|
|
eta = [2.98, 2.98, 0, 0, 0, 0]
|
|
path_segments.append(Eta3PathSegment(
|
|
start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
|
|
|
|
# construct the whole path
|
|
path = Eta3Path(path_segments)
|
|
|
|
# interpolate at several points along the path
|
|
ui = np.linspace(0, len(path_segments), 1001)
|
|
pos = np.empty((2, ui.size))
|
|
for i, u in enumerate(ui):
|
|
pos[:, i] = path.calc_path_point(u)
|
|
|
|
# plot the path
|
|
|
|
if show_animation:
|
|
plt.figure('Path from Reference')
|
|
plt.plot(pos[0, :], pos[1, :])
|
|
plt.xlabel('x')
|
|
plt.ylabel('y')
|
|
plt.title('Path')
|
|
plt.pause(1.0)
|
|
|
|
plt.show()
|
|
|
|
|
|
def main():
|
|
"""
|
|
recreate path from reference (see Table 1)
|
|
"""
|
|
test1()
|
|
test2()
|
|
test3()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|