mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 02:08:03 -05:00
114 lines
2.9 KiB
Python
114 lines
2.9 KiB
Python
"""
|
|
|
|
Car model for Hybrid A* path planning
|
|
|
|
author: Zheng Zh (@Zhengzh)
|
|
|
|
"""
|
|
|
|
import sys
|
|
import pathlib
|
|
root_dir = pathlib.Path(__file__).parent.parent.parent
|
|
sys.path.append(str(root_dir))
|
|
|
|
from math import cos, sin, tan, pi
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from utils.angle import rot_mat_2d
|
|
|
|
WB = 3.0 # rear to front wheel
|
|
W = 2.0 # width of car
|
|
LF = 3.3 # distance from rear to vehicle front end
|
|
LB = 1.0 # distance from rear to vehicle back end
|
|
MAX_STEER = 0.6 # [rad] maximum steering angle
|
|
|
|
BUBBLE_DIST = (LF - LB) / 2.0 # distance from rear to center of vehicle.
|
|
BUBBLE_R = np.hypot((LF + LB) / 2.0, W / 2.0) # bubble radius
|
|
|
|
# vehicle rectangle vertices
|
|
VRX = [LF, LF, -LB, -LB, LF]
|
|
VRY = [W / 2, -W / 2, -W / 2, W / 2, W / 2]
|
|
|
|
|
|
def check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree):
|
|
for i_x, i_y, i_yaw in zip(x_list, y_list, yaw_list):
|
|
cx = i_x + BUBBLE_DIST * cos(i_yaw)
|
|
cy = i_y + BUBBLE_DIST * sin(i_yaw)
|
|
|
|
ids = kd_tree.query_ball_point([cx, cy], BUBBLE_R)
|
|
|
|
if not ids:
|
|
continue
|
|
|
|
if not rectangle_check(i_x, i_y, i_yaw,
|
|
[ox[i] for i in ids], [oy[i] for i in ids]):
|
|
return False # collision
|
|
|
|
return True # no collision
|
|
|
|
|
|
def rectangle_check(x, y, yaw, ox, oy):
|
|
# transform obstacles to base link frame
|
|
rot = rot_mat_2d(yaw)
|
|
for iox, ioy in zip(ox, oy):
|
|
tx = iox - x
|
|
ty = ioy - y
|
|
converted_xy = np.stack([tx, ty]).T @ rot
|
|
rx, ry = converted_xy[0], converted_xy[1]
|
|
|
|
if not (rx > LF or rx < -LB or ry > W / 2.0 or ry < -W / 2.0):
|
|
return False # collision
|
|
|
|
return True # no collision
|
|
|
|
|
|
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
|
|
"""Plot arrow."""
|
|
if not isinstance(x, float):
|
|
for (i_x, i_y, i_yaw) in zip(x, y, yaw):
|
|
plot_arrow(i_x, i_y, i_yaw)
|
|
else:
|
|
plt.arrow(x, y, length * cos(yaw), length * sin(yaw),
|
|
fc=fc, ec=ec, head_width=width, head_length=width, alpha=0.4)
|
|
|
|
|
|
def plot_car(x, y, yaw):
|
|
car_color = '-k'
|
|
c, s = cos(yaw), sin(yaw)
|
|
rot = rot_mat_2d(-yaw)
|
|
car_outline_x, car_outline_y = [], []
|
|
for rx, ry in zip(VRX, VRY):
|
|
converted_xy = np.stack([rx, ry]).T @ rot
|
|
car_outline_x.append(converted_xy[0]+x)
|
|
car_outline_y.append(converted_xy[1]+y)
|
|
|
|
arrow_x, arrow_y, arrow_yaw = c * 1.5 + x, s * 1.5 + y, yaw
|
|
plot_arrow(arrow_x, arrow_y, arrow_yaw)
|
|
|
|
plt.plot(car_outline_x, car_outline_y, car_color)
|
|
|
|
|
|
def pi_2_pi(angle):
|
|
return (angle + pi) % (2 * pi) - pi
|
|
|
|
|
|
def move(x, y, yaw, distance, steer, L=WB):
|
|
x += distance * cos(yaw)
|
|
y += distance * sin(yaw)
|
|
yaw = pi_2_pi(yaw + distance * tan(steer) / L) # distance/2
|
|
|
|
return x, y, yaw
|
|
|
|
|
|
def main():
|
|
x, y, yaw = 0., 0., 1.
|
|
plt.axis('equal')
|
|
plot_car(x, y, yaw)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|