Files
PythonRobotics/PathPlanning/HybridAStar/dynamic_programming_heuristic.py
2023-01-26 21:56:42 +09:00

177 lines
4.9 KiB
Python

"""
A* grid based planning
author: Nikos Kanargias (nkana@tee.gr)
See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm)
"""
import heapq
import math
import matplotlib.pyplot as plt
show_animation = False
class Node:
def __init__(self, x, y, cost, parent_index):
self.x = x
self.y = y
self.cost = cost
self.parent_index = parent_index
def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(
self.cost) + "," + str(self.parent_index)
def calc_final_path(goal_node, closed_node_set, resolution):
# generate final course
rx, ry = [goal_node.x * resolution], [goal_node.y * resolution]
parent_index = goal_node.parent_index
while parent_index != -1:
n = closed_node_set[parent_index]
rx.append(n.x * resolution)
ry.append(n.y * resolution)
parent_index = n.parent_index
return rx, ry
def calc_distance_heuristic(gx, gy, ox, oy, resolution, rr):
"""
gx: goal x position [m]
gx: goal x position [m]
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
resolution: grid resolution [m]
rr: robot radius[m]
"""
goal_node = Node(round(gx / resolution), round(gy / resolution), 0.0, -1)
ox = [iox / resolution for iox in ox]
oy = [ioy / resolution for ioy in oy]
obstacle_map, min_x, min_y, max_x, max_y, x_w, y_w = calc_obstacle_map(
ox, oy, resolution, rr)
motion = get_motion_model()
open_set, closed_set = dict(), dict()
open_set[calc_index(goal_node, x_w, min_x, min_y)] = goal_node
priority_queue = [(0, calc_index(goal_node, x_w, min_x, min_y))]
while True:
if not priority_queue:
break
cost, c_id = heapq.heappop(priority_queue)
if c_id in open_set:
current = open_set[c_id]
closed_set[c_id] = current
open_set.pop(c_id)
else:
continue
# show graph
if show_animation: # pragma: no cover
plt.plot(current.x * resolution, current.y * resolution, "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
# Remove the item from the open set
# expand search grid based on motion model
for i, _ in enumerate(motion):
node = Node(current.x + motion[i][0],
current.y + motion[i][1],
current.cost + motion[i][2], c_id)
n_id = calc_index(node, x_w, min_x, min_y)
if n_id in closed_set:
continue
if not verify_node(node, obstacle_map, min_x, min_y, max_x, max_y):
continue
if n_id not in open_set:
open_set[n_id] = node # Discover a new node
heapq.heappush(
priority_queue,
(node.cost, calc_index(node, x_w, min_x, min_y)))
else:
if open_set[n_id].cost >= node.cost:
# This path is the best until now. record it!
open_set[n_id] = node
heapq.heappush(
priority_queue,
(node.cost, calc_index(node, x_w, min_x, min_y)))
return closed_set
def verify_node(node, obstacle_map, min_x, min_y, max_x, max_y):
if node.x < min_x:
return False
elif node.y < min_y:
return False
elif node.x >= max_x:
return False
elif node.y >= max_y:
return False
if obstacle_map[node.x][node.y]:
return False
return True
def calc_obstacle_map(ox, oy, resolution, vr):
min_x = round(min(ox))
min_y = round(min(oy))
max_x = round(max(ox))
max_y = round(max(oy))
x_width = round(max_x - min_x)
y_width = round(max_y - min_y)
# obstacle map generation
obstacle_map = [[False for _ in range(y_width)] for _ in range(x_width)]
for ix in range(x_width):
x = ix + min_x
for iy in range(y_width):
y = iy + min_y
# print(x, y)
for iox, ioy in zip(ox, oy):
d = math.hypot(iox - x, ioy - y)
if d <= vr / resolution:
obstacle_map[ix][iy] = True
break
return obstacle_map, min_x, min_y, max_x, max_y, x_width, y_width
def calc_index(node, x_width, x_min, y_min):
return (node.y - y_min) * x_width + (node.x - x_min)
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion