Files
PythonRobotics/PathPlanning/InformedRRTStar/informed_rrt_star.py
parmaski 2a489b3b82 Fix: dead link URL in doc (#1087)
* fix dead url links

* change link to MPC course

* remove dead link
2025-01-24 13:28:12 +09:00

351 lines
12 KiB
Python

"""
Informed RRT* path planning
author: Karan Chawla
Atsushi Sakai(@Atsushi_twi)
Reference: Informed RRT*: Optimal Sampling-based Path planning Focused via
Direct Sampling of an Admissible Ellipsoidal Heuristic
https://arxiv.org/pdf/1404.2334
"""
import sys
import pathlib
sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
import copy
import math
import random
import matplotlib.pyplot as plt
import numpy as np
from utils.angle import rot_mat_2d
show_animation = True
class InformedRRTStar:
def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=0.5,
goal_sample_rate=10, max_iter=200):
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.expand_dis = expand_dis
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.node_list = None
def informed_rrt_star_search(self, animation=True):
self.node_list = [self.start]
# max length we expect to find in our 'informed' sample space,
# starts as infinite
c_best = float('inf')
solution_set = set()
path = None
# Computing the sampling space
c_min = math.hypot(self.start.x - self.goal.x,
self.start.y - self.goal.y)
x_center = np.array([[(self.start.x + self.goal.x) / 2.0],
[(self.start.y + self.goal.y) / 2.0], [0]])
a1 = np.array([[(self.goal.x - self.start.x) / c_min],
[(self.goal.y - self.start.y) / c_min], [0]])
e_theta = math.atan2(a1[1, 0], a1[0, 0])
# first column of identity matrix transposed
id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3)
m = a1 @ id1_t
u, s, vh = np.linalg.svd(m, True, True)
c = u @ np.diag(
[1.0, 1.0,
np.linalg.det(u) * np.linalg.det(np.transpose(vh))]) @ vh
for i in range(self.max_iter):
# Sample space is defined by c_best
# c_min is the minimum distance between the start point and
# the goal x_center is the midpoint between the start and the
# goal c_best changes when a new path is found
rnd = self.informed_sample(c_best, c_min, x_center, c)
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearest_node = self.node_list[n_ind]
# steer
theta = math.atan2(rnd[1] - nearest_node.y,
rnd[0] - nearest_node.x)
new_node = self.get_new_node(theta, n_ind, nearest_node)
d = self.line_cost(nearest_node, new_node)
no_collision = self.check_collision(nearest_node, theta, d)
if no_collision:
near_inds = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_inds)
self.node_list.append(new_node)
self.rewire(new_node, near_inds)
if self.is_near_goal(new_node):
if self.check_segment_collision(new_node.x, new_node.y,
self.goal.x, self.goal.y):
solution_set.add(new_node)
last_index = len(self.node_list) - 1
temp_path = self.get_final_course(last_index)
temp_path_len = self.get_path_len(temp_path)
if temp_path_len < c_best:
path = temp_path
c_best = temp_path_len
if animation:
self.draw_graph(x_center=x_center, c_best=c_best, c_min=c_min,
e_theta=e_theta, rnd=rnd)
return path
def choose_parent(self, new_node, near_inds):
if len(near_inds) == 0:
return new_node
d_list = []
for i in near_inds:
dx = new_node.x - self.node_list[i].x
dy = new_node.y - self.node_list[i].y
d = math.hypot(dx, dy)
theta = math.atan2(dy, dx)
if self.check_collision(self.node_list[i], theta, d):
d_list.append(self.node_list[i].cost + d)
else:
d_list.append(float('inf'))
min_cost = min(d_list)
min_ind = near_inds[d_list.index(min_cost)]
if min_cost == float('inf'):
print("min cost is inf")
return new_node
new_node.cost = min_cost
new_node.parent = min_ind
return new_node
def find_near_nodes(self, new_node):
n_node = len(self.node_list)
r = 50.0 * math.sqrt(math.log(n_node) / n_node)
d_list = [(node.x - new_node.x) ** 2 + (node.y - new_node.y) ** 2 for
node in self.node_list]
near_inds = [d_list.index(i) for i in d_list if i <= r ** 2]
return near_inds
def informed_sample(self, c_max, c_min, x_center, c):
if c_max < float('inf'):
r = [c_max / 2.0, math.sqrt(c_max ** 2 - c_min ** 2) / 2.0,
math.sqrt(c_max ** 2 - c_min ** 2) / 2.0]
rl = np.diag(r)
x_ball = self.sample_unit_ball()
rnd = np.dot(np.dot(c, rl), x_ball) + x_center
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
else:
rnd = self.sample_free_space()
return rnd
@staticmethod
def sample_unit_ball():
a = random.random()
b = random.random()
if b < a:
a, b = b, a
sample = (b * math.cos(2 * math.pi * a / b),
b * math.sin(2 * math.pi * a / b))
return np.array([[sample[0]], [sample[1]], [0]])
def sample_free_space(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = [random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand)]
else:
rnd = [self.goal.x, self.goal.y]
return rnd
@staticmethod
def get_path_len(path):
path_len = 0
for i in range(1, len(path)):
node1_x = path[i][0]
node1_y = path[i][1]
node2_x = path[i - 1][0]
node2_y = path[i - 1][1]
path_len += math.hypot(node1_x - node2_x, node1_y - node2_y)
return path_len
@staticmethod
def line_cost(node1, node2):
return math.hypot(node1.x - node2.x, node1.y - node2.y)
@staticmethod
def get_nearest_list_index(nodes, rnd):
d_list = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in
nodes]
min_index = d_list.index(min(d_list))
return min_index
def get_new_node(self, theta, n_ind, nearest_node):
new_node = copy.deepcopy(nearest_node)
new_node.x += self.expand_dis * math.cos(theta)
new_node.y += self.expand_dis * math.sin(theta)
new_node.cost += self.expand_dis
new_node.parent = n_ind
return new_node
def is_near_goal(self, node):
d = self.line_cost(node, self.goal)
if d < self.expand_dis:
return True
return False
def rewire(self, new_node, near_inds):
n_node = len(self.node_list)
for i in near_inds:
near_node = self.node_list[i]
d = math.hypot(near_node.x - new_node.x, near_node.y - new_node.y)
s_cost = new_node.cost + d
if near_node.cost > s_cost:
theta = math.atan2(new_node.y - near_node.y,
new_node.x - near_node.x)
if self.check_collision(near_node, theta, d):
near_node.parent = n_node - 1
near_node.cost = s_cost
@staticmethod
def distance_squared_point_to_segment(v, w, p):
# Return minimum distance between line segment vw and point p
if np.array_equal(v, w):
return (p - v).dot(p - v) # v == w case
l2 = (w - v).dot(w - v) # i.e. |w-v|^2 - avoid a sqrt
# Consider the line extending the segment,
# parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
t = max(0, min(1, (p - v).dot(w - v) / l2))
projection = v + t * (w - v) # Projection falls on the segment
return (p - projection).dot(p - projection)
def check_segment_collision(self, x1, y1, x2, y2):
for (ox, oy, size) in self.obstacle_list:
dd = self.distance_squared_point_to_segment(
np.array([x1, y1]), np.array([x2, y2]), np.array([ox, oy]))
if dd <= size ** 2:
return False # collision
return True
def check_collision(self, near_node, theta, d):
tmp_node = copy.deepcopy(near_node)
end_x = tmp_node.x + math.cos(theta) * d
end_y = tmp_node.y + math.sin(theta) * d
return self.check_segment_collision(tmp_node.x, tmp_node.y,
end_x, end_y)
def get_final_course(self, last_index):
path = [[self.goal.x, self.goal.y]]
while self.node_list[last_index].parent is not None:
node = self.node_list[last_index]
path.append([node.x, node.y])
last_index = node.parent
path.append([self.start.x, self.start.y])
return path
def draw_graph(self, x_center=None, c_best=None, c_min=None, e_theta=None,
rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event', lambda event:
[exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd[0], rnd[1], "^k")
if c_best != float('inf'):
self.plot_ellipse(x_center, c_best, c_min, e_theta)
for node in self.node_list:
if node.parent is not None:
if node.x or node.y is not None:
plt.plot([node.x, self.node_list[node.parent].x],
[node.y, self.node_list[node.parent].y], "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.goal.x, self.goal.y, "xr")
plt.axis([self.min_rand, self.max_rand, self.min_rand, self.max_rand])
plt.grid(True)
plt.pause(0.01)
@staticmethod
def plot_ellipse(x_center, c_best, c_min, e_theta): # pragma: no cover
a = math.sqrt(c_best ** 2 - c_min ** 2) / 2.0
b = c_best / 2.0
angle = math.pi / 2.0 - e_theta
cx = x_center[0]
cy = x_center[1]
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
x = [a * math.cos(it) for it in t]
y = [b * math.sin(it) for it in t]
fx = rot_mat_2d(-angle) @ np.array([x, y])
px = np.array(fx[0, :] + cx).flatten()
py = np.array(fx[1, :] + cy).flatten()
plt.plot(cx, cy, "xc")
plt.plot(px, py, "--c")
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.cost = 0.0
self.parent = None
def main():
print("Start informed rrt star planning")
# create obstacles
obstacle_list = [(5, 5, 0.5), (9, 6, 1), (7, 5, 1), (1, 5, 1), (3, 6, 1),
(7, 9, 1)]
# Set params
rrt = InformedRRTStar(start=[0, 0], goal=[5, 10], rand_area=[-2, 15],
obstacle_list=obstacle_list)
path = rrt.informed_rrt_star_search(animation=show_animation)
print("Done!!")
# Plot path
if show_animation:
rrt.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01)
plt.show()
if __name__ == '__main__':
main()