Files
PythonRobotics/PathPlanning/LQRPlanner/lqr_planner.py
2023-01-26 21:56:42 +09:00

147 lines
3.4 KiB
Python

"""
LQR local path planning
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import random
import matplotlib.pyplot as plt
import numpy as np
import scipy.linalg as la
SHOW_ANIMATION = True
class LQRPlanner:
def __init__(self):
self.MAX_TIME = 100.0 # Maximum simulation time
self.DT = 0.1 # Time tick
self.GOAL_DIST = 0.1
self.MAX_ITER = 150
self.EPS = 0.01
def lqr_planning(self, sx, sy, gx, gy, show_animation=True):
rx, ry = [sx], [sy]
x = np.array([sx - gx, sy - gy]).reshape(2, 1) # State vector
# Linear system model
A, B = self.get_system_model()
found_path = False
time = 0.0
while time <= self.MAX_TIME:
time += self.DT
u = self.lqr_control(A, B, x)
x = A @ x + B @ u
rx.append(x[0, 0] + gx)
ry.append(x[1, 0] + gy)
d = math.hypot(gx - rx[-1], gy - ry[-1])
if d <= self.GOAL_DIST:
found_path = True
break
# animation
if show_animation: # pragma: no cover
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(sx, sy, "or")
plt.plot(gx, gy, "ob")
plt.plot(rx, ry, "-r")
plt.axis("equal")
plt.pause(1.0)
if not found_path:
print("Cannot found path")
return [], []
return rx, ry
def solve_dare(self, A, B, Q, R):
"""
solve a discrete time_Algebraic Riccati equation (DARE)
"""
X, Xn = Q, Q
for i in range(self.MAX_ITER):
Xn = A.T * X * A - A.T * X * B * \
la.inv(R + B.T * X * B) * B.T * X * A + Q
if (abs(Xn - X)).max() < self.EPS:
break
X = Xn
return Xn
def dlqr(self, A, B, Q, R):
"""Solve the discrete time lqr controller.
x[k+1] = A x[k] + B u[k]
cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
# ref Bertsekas, p.151
"""
# first, try to solve the ricatti equation
X = self.solve_dare(A, B, Q, R)
# compute the LQR gain
K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A)
eigValues = la.eigvals(A - B @ K)
return K, X, eigValues
def get_system_model(self):
A = np.array([[self.DT, 1.0],
[0.0, self.DT]])
B = np.array([0.0, 1.0]).reshape(2, 1)
return A, B
def lqr_control(self, A, B, x):
Kopt, X, ev = self.dlqr(A, B, np.eye(2), np.eye(1))
u = -Kopt @ x
return u
def main():
print(__file__ + " start!!")
ntest = 10 # number of goal
area = 100.0 # sampling area
lqr_planner = LQRPlanner()
for i in range(ntest):
sx = 6.0
sy = 6.0
gx = random.uniform(-area, area)
gy = random.uniform(-area, area)
rx, ry = lqr_planner.lqr_planning(sx, sy, gx, gy, show_animation=SHOW_ANIMATION)
if SHOW_ANIMATION: # pragma: no cover
plt.plot(sx, sy, "or")
plt.plot(gx, gy, "ob")
plt.plot(rx, ry, "-r")
plt.axis("equal")
plt.pause(1.0)
if __name__ == '__main__':
main()