Files
2024-05-18 18:56:04 +09:00

292 lines
8.8 KiB
Python

"""
Path planning Sample Code with Randomized Rapidly-Exploring Random Trees (RRT)
author: AtsushiSakai(@Atsushi_twi)
"""
import math
import random
import matplotlib.pyplot as plt
import numpy as np
show_animation = True
class RRT:
"""
Class for RRT planning
"""
class Node:
"""
RRT Node
"""
def __init__(self, x, y):
self.x = x
self.y = y
self.path_x = []
self.path_y = []
self.parent = None
class AreaBounds:
def __init__(self, area):
self.xmin = float(area[0])
self.xmax = float(area[1])
self.ymin = float(area[2])
self.ymax = float(area[3])
def __init__(self,
start,
goal,
obstacle_list,
rand_area,
expand_dis=3.0,
path_resolution=0.5,
goal_sample_rate=5,
max_iter=500,
play_area=None,
robot_radius=0.0,
):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
play_area:stay inside this area [xmin,xmax,ymin,ymax]
robot_radius: robot body modeled as circle with given radius
"""
self.start = self.Node(start[0], start[1])
self.end = self.Node(goal[0], goal[1])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
if play_area is not None:
self.play_area = self.AreaBounds(play_area)
else:
self.play_area = None
self.expand_dis = expand_dis
self.path_resolution = path_resolution
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.node_list = []
self.robot_radius = robot_radius
def planning(self, animation=True):
"""
rrt path planning
animation: flag for animation on or off
"""
self.node_list = [self.start]
for i in range(self.max_iter):
rnd_node = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node)
nearest_node = self.node_list[nearest_ind]
new_node = self.steer(nearest_node, rnd_node, self.expand_dis)
if self.check_if_outside_play_area(new_node, self.play_area) and \
self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
self.node_list.append(new_node)
if animation and i % 5 == 0:
self.draw_graph(rnd_node)
if self.calc_dist_to_goal(self.node_list[-1].x,
self.node_list[-1].y) <= self.expand_dis:
final_node = self.steer(self.node_list[-1], self.end,
self.expand_dis)
if self.check_collision(
final_node, self.obstacle_list, self.robot_radius):
return self.generate_final_course(len(self.node_list) - 1)
if animation and i % 5:
self.draw_graph(rnd_node)
return None # cannot find path
def steer(self, from_node, to_node, extend_length=float("inf")):
new_node = self.Node(from_node.x, from_node.y)
d, theta = self.calc_distance_and_angle(new_node, to_node)
new_node.path_x = [new_node.x]
new_node.path_y = [new_node.y]
if extend_length > d:
extend_length = d
n_expand = math.floor(extend_length / self.path_resolution)
for _ in range(n_expand):
new_node.x += self.path_resolution * math.cos(theta)
new_node.y += self.path_resolution * math.sin(theta)
new_node.path_x.append(new_node.x)
new_node.path_y.append(new_node.y)
d, _ = self.calc_distance_and_angle(new_node, to_node)
if d <= self.path_resolution:
new_node.path_x.append(to_node.x)
new_node.path_y.append(to_node.y)
new_node.x = to_node.x
new_node.y = to_node.y
new_node.parent = from_node
return new_node
def generate_final_course(self, goal_ind):
path = [[self.end.x, self.end.y]]
node = self.node_list[goal_ind]
while node.parent is not None:
path.append([node.x, node.y])
node = node.parent
path.append([node.x, node.y])
return path
def calc_dist_to_goal(self, x, y):
dx = x - self.end.x
dy = y - self.end.y
return math.hypot(dx, dy)
def get_random_node(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = self.Node(
random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand))
else: # goal point sampling
rnd = self.Node(self.end.x, self.end.y)
return rnd
def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
if self.robot_radius > 0.0:
self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r')
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacle_list:
self.plot_circle(ox, oy, size)
if self.play_area is not None:
plt.plot([self.play_area.xmin, self.play_area.xmax,
self.play_area.xmax, self.play_area.xmin,
self.play_area.xmin],
[self.play_area.ymin, self.play_area.ymin,
self.play_area.ymax, self.play_area.ymax,
self.play_area.ymin],
"-k")
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis("equal")
plt.axis([self.min_rand, self.max_rand, self.min_rand, self.max_rand])
plt.grid(True)
plt.pause(0.01)
@staticmethod
def plot_circle(x, y, size, color="-b"): # pragma: no cover
deg = list(range(0, 360, 5))
deg.append(0)
xl = [x + size * math.cos(np.deg2rad(d)) for d in deg]
yl = [y + size * math.sin(np.deg2rad(d)) for d in deg]
plt.plot(xl, yl, color)
@staticmethod
def get_nearest_node_index(node_list, rnd_node):
dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2
for node in node_list]
minind = dlist.index(min(dlist))
return minind
@staticmethod
def check_if_outside_play_area(node, play_area):
if play_area is None:
return True # no play_area was defined, every pos should be ok
if node.x < play_area.xmin or node.x > play_area.xmax or \
node.y < play_area.ymin or node.y > play_area.ymax:
return False # outside - bad
else:
return True # inside - ok
@staticmethod
def check_collision(node, obstacleList, robot_radius):
if node is None:
return False
for (ox, oy, size) in obstacleList:
dx_list = [ox - x for x in node.path_x]
dy_list = [oy - y for y in node.path_y]
d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)]
if min(d_list) <= (size+robot_radius)**2:
return False # collision
return True # safe
@staticmethod
def calc_distance_and_angle(from_node, to_node):
dx = to_node.x - from_node.x
dy = to_node.y - from_node.y
d = math.hypot(dx, dy)
theta = math.atan2(dy, dx)
return d, theta
def main(gx=6.0, gy=10.0):
print("start " + __file__)
# ====Search Path with RRT====
obstacleList = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2),
(9, 5, 2), (8, 10, 1)] # [x, y, radius]
# Set Initial parameters
rrt = RRT(
start=[0, 0],
goal=[gx, gy],
rand_area=[-2, 15],
obstacle_list=obstacleList,
# play_area=[0, 10, 0, 14]
robot_radius=0.8
)
path = rrt.planning(animation=show_animation)
if path is None:
print("Cannot find path")
else:
print("found path!!")
# Draw final path
if show_animation:
rrt.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01) # Need for Mac
plt.show()
if __name__ == '__main__':
main()