mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-22 18:58:05 -05:00
176 lines
3.8 KiB
Python
176 lines
3.8 KiB
Python
"""
|
|
Inverted Pendulum MPC control
|
|
author: Atsushi Sakai
|
|
"""
|
|
|
|
import math
|
|
import time
|
|
|
|
import cvxpy
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
# Model parameters
|
|
|
|
l_bar = 2.0 # length of bar
|
|
M = 1.0 # [kg]
|
|
m = 0.3 # [kg]
|
|
g = 9.8 # [m/s^2]
|
|
|
|
Q = np.diag([0.0, 1.0, 1.0, 0.0])
|
|
R = np.diag([0.01])
|
|
nx = 4 # number of state
|
|
nu = 1 # number of input
|
|
T = 30 # Horizon length
|
|
delta_t = 0.1 # time tick
|
|
|
|
animation = True
|
|
|
|
|
|
def main():
|
|
x0 = np.array([
|
|
[0.0],
|
|
[0.0],
|
|
[0.3],
|
|
[0.0]
|
|
])
|
|
|
|
x = np.copy(x0)
|
|
|
|
for i in range(50):
|
|
|
|
# calc control input
|
|
opt_x, opt_delta_x, opt_theta, opt_delta_theta, opt_input = \
|
|
mpc_control(x)
|
|
|
|
# get input
|
|
u = opt_input[0]
|
|
|
|
# simulate inverted pendulum cart
|
|
x = simulation(x, u)
|
|
|
|
if animation:
|
|
plt.clf()
|
|
px = float(x[0])
|
|
theta = float(x[2])
|
|
plot_cart(px, theta)
|
|
plt.xlim([-5.0, 2.0])
|
|
plt.pause(0.001)
|
|
|
|
|
|
def simulation(x, u):
|
|
A, B = get_model_matrix()
|
|
|
|
x = np.dot(A, x) + np.dot(B, u)
|
|
|
|
return x
|
|
|
|
|
|
def mpc_control(x0):
|
|
x = cvxpy.Variable((nx, T + 1))
|
|
u = cvxpy.Variable((nu, T))
|
|
|
|
A, B = get_model_matrix()
|
|
|
|
cost = 0.0
|
|
constr = []
|
|
for t in range(T):
|
|
cost += cvxpy.quad_form(x[:, t + 1], Q)
|
|
cost += cvxpy.quad_form(u[:, t], R)
|
|
constr += [x[:, t + 1] == A * x[:, t] + B * u[:, t]]
|
|
|
|
constr += [x[:, 0] == x0[:, 0]]
|
|
prob = cvxpy.Problem(cvxpy.Minimize(cost), constr)
|
|
|
|
start = time.time()
|
|
prob.solve(verbose=False)
|
|
elapsed_time = time.time() - start
|
|
print("calc time:{0} [sec]".format(elapsed_time))
|
|
|
|
if prob.status == cvxpy.OPTIMAL:
|
|
ox = get_numpy_array_from_matrix(x.value[0, :])
|
|
dx = get_numpy_array_from_matrix(x.value[1, :])
|
|
theta = get_numpy_array_from_matrix(x.value[2, :])
|
|
d_theta = get_numpy_array_from_matrix(x.value[3, :])
|
|
|
|
ou = get_numpy_array_from_matrix(u.value[0, :])
|
|
else:
|
|
ox, dx, theta, d_theta, ou = None, None, None, None, None
|
|
|
|
return ox, dx, theta, d_theta, ou
|
|
|
|
|
|
def get_numpy_array_from_matrix(x):
|
|
"""
|
|
get build-in list from matrix
|
|
"""
|
|
return np.array(x).flatten()
|
|
|
|
|
|
def get_model_matrix():
|
|
A = np.array([
|
|
[0.0, 1.0, 0.0, 0.0],
|
|
[0.0, 0.0, m * g / M, 0.0],
|
|
[0.0, 0.0, 0.0, 1.0],
|
|
[0.0, 0.0, g * (M + m) / (l_bar * M), 0.0]
|
|
])
|
|
A = np.eye(nx) + delta_t * A
|
|
|
|
B = np.array([
|
|
[0.0],
|
|
[1.0 / M],
|
|
[0.0],
|
|
[1.0 / (l_bar * M)]
|
|
])
|
|
B = delta_t * B
|
|
|
|
return A, B
|
|
|
|
|
|
def flatten(a):
|
|
return np.array(a).flatten()
|
|
|
|
|
|
def plot_cart(xt, theta):
|
|
cart_w = 1.0
|
|
cart_h = 0.5
|
|
radius = 0.1
|
|
|
|
cx = np.array([-cart_w / 2.0, cart_w / 2.0, cart_w /
|
|
2.0, -cart_w / 2.0, -cart_w / 2.0])
|
|
cy = np.array([0.0, 0.0, cart_h, cart_h, 0.0])
|
|
cy += radius * 2.0
|
|
|
|
cx = cx + xt
|
|
|
|
bx = np.array([0.0, l_bar * math.sin(-theta)])
|
|
bx += xt
|
|
by = np.array([cart_h, l_bar * math.cos(-theta) + cart_h])
|
|
by += radius * 2.0
|
|
|
|
angles = np.arange(0.0, math.pi * 2.0, math.radians(3.0))
|
|
ox = np.array([radius * math.cos(a) for a in angles])
|
|
oy = np.array([radius * math.sin(a) for a in angles])
|
|
|
|
rwx = np.copy(ox) + cart_w / 4.0 + xt
|
|
rwy = np.copy(oy) + radius
|
|
lwx = np.copy(ox) - cart_w / 4.0 + xt
|
|
lwy = np.copy(oy) + radius
|
|
|
|
wx = np.copy(ox) + bx[-1]
|
|
wy = np.copy(oy) + by[-1]
|
|
|
|
plt.plot(flatten(cx), flatten(cy), "-b")
|
|
plt.plot(flatten(bx), flatten(by), "-k")
|
|
plt.plot(flatten(rwx), flatten(rwy), "-k")
|
|
plt.plot(flatten(lwx), flatten(lwy), "-k")
|
|
plt.plot(flatten(wx), flatten(wy), "-k")
|
|
plt.title("x:" + str(round(xt, 2)) + ",theta:" +
|
|
str(round(math.degrees(theta), 2)))
|
|
|
|
plt.axis("equal")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|