mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-28 14:08:05 -05:00
* fix dubins path length bug and clean up codes. * fix line length CI error * fix line length CI error * fix line length CI error * fix line length CI error * fix line length CI error * fix line length CI error * fix line length CI error * fix line length CI error
367 lines
11 KiB
Python
367 lines
11 KiB
Python
"""
|
|
|
|
Dubins path planner sample code
|
|
|
|
author Atsushi Sakai(@Atsushi_twi)
|
|
|
|
"""
|
|
import math
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from scipy.spatial.transform import Rotation as Rot
|
|
|
|
show_animation = True
|
|
|
|
|
|
def dubins_path_planning(s_x, s_y, s_yaw, g_x, g_y, g_yaw, curvature,
|
|
step_size=0.1):
|
|
"""
|
|
Dubins path planner
|
|
|
|
:param s_x: x position of start point [m]
|
|
:param s_y: y position of start point [m]
|
|
:param s_yaw: yaw angle of start point [rad]
|
|
:param g_x: x position of end point [m]
|
|
:param g_y: y position of end point [m]
|
|
:param g_yaw: yaw angle of end point [rad]
|
|
:param curvature: curvature for curve [1/m]
|
|
:param step_size: (optional) step size between two path points [m]
|
|
:return:
|
|
x_list: x positions of a path
|
|
y_list: y positions of a path
|
|
yaw_list: yaw angles of a path
|
|
modes: mode list of a path
|
|
lengths: length of path segments.
|
|
"""
|
|
|
|
g_x -= s_x
|
|
g_y -= s_y
|
|
|
|
l_rot = Rot.from_euler('z', s_yaw).as_matrix()[0:2, 0:2]
|
|
le_xy = np.stack([g_x, g_y]).T @ l_rot
|
|
le_yaw = g_yaw - s_yaw
|
|
|
|
lp_x, lp_y, lp_yaw, modes, lengths = dubins_path_planning_from_origin(
|
|
le_xy[0], le_xy[1], le_yaw, curvature, step_size)
|
|
|
|
rot = Rot.from_euler('z', -s_yaw).as_matrix()[0:2, 0:2]
|
|
converted_xy = np.stack([lp_x, lp_y]).T @ rot
|
|
x_list = converted_xy[:, 0] + s_x
|
|
y_list = converted_xy[:, 1] + s_y
|
|
yaw_list = [pi_2_pi(i_yaw + s_yaw) for i_yaw in lp_yaw]
|
|
|
|
return x_list, y_list, yaw_list, modes, lengths
|
|
|
|
|
|
def mod2pi(theta):
|
|
return theta - 2.0 * math.pi * math.floor(theta / 2.0 / math.pi)
|
|
|
|
|
|
def pi_2_pi(angle):
|
|
return (angle + math.pi) % (2 * math.pi) - math.pi
|
|
|
|
|
|
def left_straight_left(alpha, beta, d):
|
|
sa = math.sin(alpha)
|
|
sb = math.sin(beta)
|
|
ca = math.cos(alpha)
|
|
cb = math.cos(beta)
|
|
c_ab = math.cos(alpha - beta)
|
|
|
|
tmp0 = d + sa - sb
|
|
|
|
mode = ["L", "S", "L"]
|
|
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sa - sb))
|
|
if p_squared < 0:
|
|
return None, None, None, mode
|
|
tmp1 = math.atan2((cb - ca), tmp0)
|
|
t = mod2pi(-alpha + tmp1)
|
|
p = math.sqrt(p_squared)
|
|
q = mod2pi(beta - tmp1)
|
|
|
|
return t, p, q, mode
|
|
|
|
|
|
def right_straight_right(alpha, beta, d):
|
|
sa = math.sin(alpha)
|
|
sb = math.sin(beta)
|
|
ca = math.cos(alpha)
|
|
cb = math.cos(beta)
|
|
c_ab = math.cos(alpha - beta)
|
|
|
|
tmp0 = d - sa + sb
|
|
mode = ["R", "S", "R"]
|
|
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sb - sa))
|
|
if p_squared < 0:
|
|
return None, None, None, mode
|
|
tmp1 = math.atan2((ca - cb), tmp0)
|
|
t = mod2pi(alpha - tmp1)
|
|
p = math.sqrt(p_squared)
|
|
q = mod2pi(-beta + tmp1)
|
|
|
|
return t, p, q, mode
|
|
|
|
|
|
def left_straight_right(alpha, beta, d):
|
|
sa = math.sin(alpha)
|
|
sb = math.sin(beta)
|
|
ca = math.cos(alpha)
|
|
cb = math.cos(beta)
|
|
c_ab = math.cos(alpha - beta)
|
|
|
|
p_squared = -2 + (d * d) + (2 * c_ab) + (2 * d * (sa + sb))
|
|
mode = ["L", "S", "R"]
|
|
if p_squared < 0:
|
|
return None, None, None, mode
|
|
p = math.sqrt(p_squared)
|
|
tmp2 = math.atan2((-ca - cb), (d + sa + sb)) - math.atan2(-2.0, p)
|
|
t = mod2pi(-alpha + tmp2)
|
|
q = mod2pi(-mod2pi(beta) + tmp2)
|
|
|
|
return t, p, q, mode
|
|
|
|
|
|
def right_straight_left(alpha, beta, d):
|
|
sa = math.sin(alpha)
|
|
sb = math.sin(beta)
|
|
ca = math.cos(alpha)
|
|
cb = math.cos(beta)
|
|
c_ab = math.cos(alpha - beta)
|
|
|
|
p_squared = (d * d) - 2 + (2 * c_ab) - (2 * d * (sa + sb))
|
|
mode = ["R", "S", "L"]
|
|
if p_squared < 0:
|
|
return None, None, None, mode
|
|
p = math.sqrt(p_squared)
|
|
tmp2 = math.atan2((ca + cb), (d - sa - sb)) - math.atan2(2.0, p)
|
|
t = mod2pi(alpha - tmp2)
|
|
q = mod2pi(beta - tmp2)
|
|
|
|
return t, p, q, mode
|
|
|
|
|
|
def right_left_right(alpha, beta, d):
|
|
sa = math.sin(alpha)
|
|
sb = math.sin(beta)
|
|
ca = math.cos(alpha)
|
|
cb = math.cos(beta)
|
|
c_ab = math.cos(alpha - beta)
|
|
|
|
mode = ["R", "L", "R"]
|
|
tmp_rlr = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (sa - sb)) / 8.0
|
|
if abs(tmp_rlr) > 1.0:
|
|
return None, None, None, mode
|
|
|
|
p = mod2pi(2 * math.pi - math.acos(tmp_rlr))
|
|
t = mod2pi(alpha - math.atan2(ca - cb, d - sa + sb) + mod2pi(p / 2.0))
|
|
q = mod2pi(alpha - beta - t + mod2pi(p))
|
|
return t, p, q, mode
|
|
|
|
|
|
def left_right_left(alpha, beta, d):
|
|
sa = math.sin(alpha)
|
|
sb = math.sin(beta)
|
|
ca = math.cos(alpha)
|
|
cb = math.cos(beta)
|
|
c_ab = math.cos(alpha - beta)
|
|
|
|
mode = ["L", "R", "L"]
|
|
tmp_lrl = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (- sa + sb)) / 8.0
|
|
if abs(tmp_lrl) > 1:
|
|
return None, None, None, mode
|
|
p = mod2pi(2 * math.pi - math.acos(tmp_lrl))
|
|
t = mod2pi(-alpha - math.atan2(ca - cb, d + sa - sb) + p / 2.0)
|
|
q = mod2pi(mod2pi(beta) - alpha - t + mod2pi(p))
|
|
|
|
return t, p, q, mode
|
|
|
|
|
|
def dubins_path_planning_from_origin(end_x, end_y, end_yaw, curvature,
|
|
step_size):
|
|
dx = end_x
|
|
dy = end_y
|
|
D = math.hypot(dx, dy)
|
|
d = D * curvature
|
|
|
|
theta = mod2pi(math.atan2(dy, dx))
|
|
alpha = mod2pi(- theta)
|
|
beta = mod2pi(end_yaw - theta)
|
|
|
|
planning_funcs = [left_straight_left, right_straight_right,
|
|
left_straight_right, right_straight_left,
|
|
right_left_right, left_right_left]
|
|
|
|
best_cost = float("inf")
|
|
bt, bp, bq, best_mode = None, None, None, None
|
|
|
|
for planner in planning_funcs:
|
|
t, p, q, mode = planner(alpha, beta, d)
|
|
if t is None:
|
|
continue
|
|
|
|
cost = (abs(t) + abs(p) + abs(q))
|
|
if best_cost > cost:
|
|
bt, bp, bq, best_mode = t, p, q, mode
|
|
best_cost = cost
|
|
lengths = [bt, bp, bq]
|
|
|
|
x_list, y_list, yaw_list, directions = generate_local_course(sum(lengths),
|
|
lengths,
|
|
best_mode,
|
|
curvature,
|
|
step_size)
|
|
|
|
lengths = [length / curvature for length in lengths]
|
|
|
|
return x_list, y_list, yaw_list, best_mode, lengths
|
|
|
|
|
|
def interpolate(ind, length, mode, max_curvature, origin_x, origin_y,
|
|
origin_yaw, path_x, path_y, path_yaw, directions):
|
|
if mode == "S":
|
|
path_x[ind] = origin_x + length / max_curvature * math.cos(origin_yaw)
|
|
path_y[ind] = origin_y + length / max_curvature * math.sin(origin_yaw)
|
|
path_yaw[ind] = origin_yaw
|
|
else: # curve
|
|
ldx = math.sin(length) / max_curvature
|
|
ldy = 0.0
|
|
if mode == "L": # left turn
|
|
ldy = (1.0 - math.cos(length)) / max_curvature
|
|
elif mode == "R": # right turn
|
|
ldy = (1.0 - math.cos(length)) / -max_curvature
|
|
gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy
|
|
gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy
|
|
path_x[ind] = origin_x + gdx
|
|
path_y[ind] = origin_y + gdy
|
|
|
|
if mode == "L": # left turn
|
|
path_yaw[ind] = origin_yaw + length
|
|
elif mode == "R": # right turn
|
|
path_yaw[ind] = origin_yaw - length
|
|
|
|
if length > 0.0:
|
|
directions[ind] = 1
|
|
else:
|
|
directions[ind] = -1
|
|
|
|
return path_x, path_y, path_yaw, directions
|
|
|
|
|
|
def generate_local_course(total_length, lengths, modes, max_curvature,
|
|
step_size):
|
|
n_point = math.trunc(total_length / step_size) + len(lengths) + 4
|
|
|
|
p_x = [0.0 for _ in range(n_point)]
|
|
p_y = [0.0 for _ in range(n_point)]
|
|
p_yaw = [0.0 for _ in range(n_point)]
|
|
directions = [0.0 for _ in range(n_point)]
|
|
ind = 1
|
|
|
|
if lengths[0] > 0.0:
|
|
directions[0] = 1
|
|
else:
|
|
directions[0] = -1
|
|
|
|
ll = 0.0
|
|
|
|
for (m, length, i) in zip(modes, lengths, range(len(modes))):
|
|
if length == 0.0:
|
|
continue
|
|
elif length > 0.0:
|
|
dist = step_size
|
|
else:
|
|
dist = -step_size
|
|
|
|
# set origin state
|
|
origin_x, origin_y, origin_yaw = p_x[ind], p_y[ind], p_yaw[ind]
|
|
|
|
ind -= 1
|
|
if i >= 1 and (lengths[i - 1] * lengths[i]) > 0:
|
|
pd = - dist - ll
|
|
else:
|
|
pd = dist - ll
|
|
|
|
while abs(pd) <= abs(length):
|
|
ind += 1
|
|
p_x, p_y, p_yaw, directions = interpolate(ind, pd, m,
|
|
max_curvature,
|
|
origin_x,
|
|
origin_y,
|
|
origin_yaw,
|
|
p_x, p_y,
|
|
p_yaw,
|
|
directions)
|
|
pd += dist
|
|
|
|
ll = length - pd - dist # calc remain length
|
|
|
|
ind += 1
|
|
p_x, p_y, p_yaw, directions = interpolate(ind, length, m,
|
|
max_curvature,
|
|
origin_x, origin_y,
|
|
origin_yaw,
|
|
p_x, p_y, p_yaw,
|
|
directions)
|
|
|
|
if len(p_x) <= 1:
|
|
return [], [], [], []
|
|
|
|
# remove unused data
|
|
while len(p_x) >= 1 and p_x[-1] == 0.0:
|
|
p_x.pop()
|
|
p_y.pop()
|
|
p_yaw.pop()
|
|
directions.pop()
|
|
|
|
return p_x, p_y, p_yaw, directions
|
|
|
|
|
|
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r",
|
|
ec="k"): # pragma: no cover
|
|
if not isinstance(x, float):
|
|
for (i_x, i_y, i_yaw) in zip(x, y, yaw):
|
|
plot_arrow(i_x, i_y, i_yaw)
|
|
else:
|
|
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc,
|
|
ec=ec, head_width=width, head_length=width)
|
|
plt.plot(x, y)
|
|
|
|
|
|
def main():
|
|
print("Dubins path planner sample start!!")
|
|
|
|
start_x = 1.0 # [m]
|
|
start_y = 1.0 # [m]
|
|
start_yaw = np.deg2rad(45.0) # [rad]
|
|
|
|
end_x = -3.0 # [m]
|
|
end_y = -3.0 # [m]
|
|
end_yaw = np.deg2rad(-45.0) # [rad]
|
|
|
|
curvature = 1.0
|
|
|
|
path_x, path_y, path_yaw, mode, lengths = dubins_path_planning(start_x,
|
|
start_y,
|
|
start_yaw,
|
|
end_x,
|
|
end_y,
|
|
end_yaw,
|
|
curvature)
|
|
|
|
if show_animation:
|
|
plt.plot(path_x, path_y, label="final course " + "".join(mode))
|
|
|
|
# plotting
|
|
plot_arrow(start_x, start_y, start_yaw)
|
|
plot_arrow(end_x, end_y, end_yaw)
|
|
|
|
plt.legend()
|
|
plt.grid(True)
|
|
plt.axis("equal")
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|