Files
PythonRobotics/SLAM/iterative_closest_point/iterative_closest_point.py
Atsushi Sakai 3abc9c69e3 enable 3d plot
2021-04-02 20:53:26 +09:00

206 lines
5.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
Iterative Closest Point (ICP) SLAM example
author: Atsushi Sakai (@Atsushi_twi), Göktuğ Karakaşlı, Shamil Gemuev
"""
import math
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import matplotlib.pyplot as plt
import numpy as np
# ICP parameters
EPS = 0.0001
MAX_ITER = 100
show_animation = True
def icp_matching(previous_points, current_points):
"""
Iterative Closest Point matching
- input
previous_points: 2D or 3D points in the previous frame
current_points: 2D or 3D points in the current frame
- output
R: Rotation matrix
T: Translation vector
"""
H = None # homogeneous transformation matrix
dError = np.inf
preError = np.inf
count = 0
if show_animation:
fig = plt.figure()
if previous_points.shape[0] == 3:
fig.add_subplot(111, projection='3d')
while dError >= EPS:
count += 1
if show_animation: # pragma: no cover
plot_points(previous_points, current_points, fig)
plt.pause(0.1)
indexes, error = nearest_neighbor_association(previous_points, current_points)
Rt, Tt = svd_motion_estimation(previous_points[:, indexes], current_points)
# update current points
current_points = (Rt @ current_points) + Tt[:, np.newaxis]
dError = preError - error
print("Residual:", error)
if dError < 0: # prevent matrix H changing, exit loop
print("Not Converge...", preError, dError, count)
break
preError = error
H = update_homogeneous_matrix(H, Rt, Tt)
if dError <= EPS:
print("Converge", error, dError, count)
break
elif MAX_ITER <= count:
print("Not Converge...", error, dError, count)
break
R = np.array(H[0:-1, 0:-1])
T = np.array(H[0:-1, -1])
return R, T
def update_homogeneous_matrix(Hin, R, T):
r_size = R.shape[0]
H = np.zeros((r_size + 1, r_size + 1))
H[0:r_size, 0:r_size] = R
H[0:r_size, r_size] = T
H[r_size, r_size] = 1.0
if Hin is None:
return H
else:
return Hin @ H
def nearest_neighbor_association(previous_points, current_points):
# calc the sum of residual errors
delta_points = previous_points - current_points
d = np.linalg.norm(delta_points, axis=0)
error = sum(d)
# calc index with nearest neighbor assosiation
d = np.linalg.norm(np.repeat(current_points, previous_points.shape[1], axis=1)
- np.tile(previous_points, (1, current_points.shape[1])), axis=0)
indexes = np.argmin(d.reshape(current_points.shape[1], previous_points.shape[1]), axis=1)
return indexes, error
def svd_motion_estimation(previous_points, current_points):
pm = np.mean(previous_points, axis=1)
cm = np.mean(current_points, axis=1)
p_shift = previous_points - pm[:, np.newaxis]
c_shift = current_points - cm[:, np.newaxis]
W = c_shift @ p_shift.T
u, s, vh = np.linalg.svd(W)
R = (u @ vh).T
t = pm - (R @ cm)
return R, t
def plot_points(previous_points, current_points, figure):
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if previous_points.shape[0] == 3:
plt.clf()
axes = figure.add_subplot(111, projection='3d')
axes.scatter(previous_points[0, :], previous_points[1, :],
previous_points[2, :], c="r", marker=".")
axes.scatter(current_points[0, :], current_points[1, :],
current_points[2, :], c="b", marker=".")
axes.scatter(0.0, 0.0, 0.0, c="r", marker="x")
figure.canvas.draw()
else:
plt.cla()
plt.plot(previous_points[0, :], previous_points[1, :], ".r")
plt.plot(current_points[0, :], current_points[1, :], ".b")
plt.plot(0.0, 0.0, "xr")
plt.axis("equal")
def main():
print(__file__ + " start!!")
# simulation parameters
nPoint = 1000
fieldLength = 50.0
motion = [0.5, 2.0, np.deg2rad(-10.0)] # movement [x[m],y[m],yaw[deg]]
nsim = 3 # number of simulation
for _ in range(nsim):
# previous points
px = (np.random.rand(nPoint) - 0.5) * fieldLength
py = (np.random.rand(nPoint) - 0.5) * fieldLength
previous_points = np.vstack((px, py))
# current points
cx = [math.cos(motion[2]) * x - math.sin(motion[2]) * y + motion[0]
for (x, y) in zip(px, py)]
cy = [math.sin(motion[2]) * x + math.cos(motion[2]) * y + motion[1]
for (x, y) in zip(px, py)]
current_points = np.vstack((cx, cy))
R, T = icp_matching(previous_points, current_points)
print("R:", R)
print("T:", T)
def main_3d_points():
print(__file__ + " start!!")
# simulation parameters for 3d point set
nPoint = 1000
fieldLength = 50.0
motion = [0.5, 2.0, -5, np.deg2rad(-10.0)] # [x[m],y[m],z[m],roll[deg]]
nsim = 3 # number of simulation
for _ in range(nsim):
# previous points
px = (np.random.rand(nPoint) - 0.5) * fieldLength
py = (np.random.rand(nPoint) - 0.5) * fieldLength
pz = (np.random.rand(nPoint) - 0.5) * fieldLength
previous_points = np.vstack((px, py, pz))
# current points
cx = [math.cos(motion[3]) * x - math.sin(motion[3]) * z + motion[0]
for (x, z) in zip(px, pz)]
cy = [y + motion[1] for y in py]
cz = [math.sin(motion[3]) * x + math.cos(motion[3]) * z + motion[2]
for (x, z) in zip(px, pz)]
current_points = np.vstack((cx, cy, cz))
R, T = icp_matching(previous_points, current_points)
print("R:", R)
print("T:", T)
if __name__ == '__main__':
main()
main_3d_points()