Files
PythonRobotics/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py
Atsushi Sakai b4de4a1db7 code clean up
2019-02-02 15:23:12 +09:00

470 lines
12 KiB
Python

"""
Path Planning Sample Code with Closed loop RRT for car like robot.
author: AtsushiSakai(@Atsushi_twi)
"""
import random
import math
import copy
import numpy as np
import pure_pursuit
import matplotlib.pyplot as plt
import sys
sys.path.append("../ReedsSheppPath/")
try:
import reeds_shepp_path_planning
import unicycle_model
except:
raise
show_animation = True
target_speed = 10.0 / 3.6
STEP_SIZE = 0.1
class RRT():
"""
Class for RRT Planning
"""
def __init__(self, start, goal, obstacleList, randArea,
maxIter=200):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Ramdom Samping Area [min,max]
"""
self.start = Node(start[0], start[1], start[2])
self.end = Node(goal[0], goal[1], goal[2])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.obstacleList = obstacleList
self.maxIter = maxIter
def try_goal_path(self):
goal = Node(self.end.x, self.end.y, self.end.yaw)
newNode = self.steer(goal, len(self.nodeList) - 1)
if newNode is None:
return
if self.CollisionCheck(newNode, self.obstacleList):
# print("goal path is OK")
self.nodeList.append(newNode)
def Planning(self, animation=True):
"""
Pathplanning
animation: flag for animation on or off
"""
self.nodeList = [self.start]
self.try_goal_path()
for i in range(self.maxIter):
rnd = self.get_random_point()
nind = self.GetNearestListIndex(self.nodeList, rnd)
newNode = self.steer(rnd, nind)
# print(newNode.cost)
if newNode is None:
continue
if self.CollisionCheck(newNode, self.obstacleList):
nearinds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearinds)
if newNode is None:
continue
self.nodeList.append(newNode)
self.rewire(newNode, nearinds)
self.try_goal_path()
if animation and i % 5 == 0:
self.DrawGraph(rnd=rnd)
# generate coruse
path_indexs = self.get_best_last_indexs()
flag, x, y, yaw, v, t, a, d = self.search_best_feasible_path(
path_indexs)
return flag, x, y, yaw, v, t, a, d
def search_best_feasible_path(self, path_indexs):
print("Start search feasible path")
best_time = float("inf")
fx = None
# pure pursuit tracking
for ind in path_indexs:
path = self.gen_final_course(ind)
flag, x, y, yaw, v, t, a, d = self.check_tracking_path_is_feasible(
path)
if flag and best_time >= t[-1]:
print("feasible path is found")
best_time = t[-1]
fx, fy, fyaw, fv, ft, fa, fd = x, y, yaw, v, t, a, d
print("best time is")
print(best_time)
if fx:
fx.append(self.end.x)
fy.append(self.end.y)
fyaw.append(self.end.yaw)
return True, fx, fy, fyaw, fv, ft, fa, fd
return False, None, None, None, None, None, None, None
def calc_tracking_path(self, path):
path = np.array(path[::-1])
ds = 0.2
for i in range(10):
lx = path[-1, 0]
ly = path[-1, 1]
lyaw = path[-1, 2]
move_yaw = math.atan2(path[-2, 1] - ly, path[-2, 0] - lx)
if abs(lyaw - move_yaw) >= math.pi / 2.0:
print("back")
ds *= -1
lstate = np.array(
[lx + ds * math.cos(lyaw), ly + ds * math.sin(lyaw), lyaw])
# print(lstate)
path = np.vstack((path, lstate))
return path
def check_tracking_path_is_feasible(self, path):
# print("check_tracking_path_is_feasible")
cx = np.array(path[:, 0])
cy = np.array(path[:, 1])
cyaw = np.array(path[:, 2])
goal = [cx[-1], cy[-1], cyaw[-1]]
cx, cy, cyaw = pure_pursuit.extend_path(cx, cy, cyaw)
speed_profile = pure_pursuit.calc_speed_profile(
cx, cy, cyaw, target_speed)
t, x, y, yaw, v, a, d, find_goal = pure_pursuit.closed_loop_prediction(
cx, cy, cyaw, speed_profile, goal)
yaw = [self.pi_2_pi(iyaw) for iyaw in yaw]
if not find_goal:
print("cannot reach goal")
if abs(yaw[-1] - goal[2]) >= math.pi / 4.0:
print("final angle is bad")
find_goal = False
travel = sum([abs(iv) * unicycle_model.dt for iv in v])
# print(travel)
origin_travel = sum([math.sqrt(dx ** 2 + dy ** 2)
for (dx, dy) in zip(np.diff(cx), np.diff(cy))])
# print(origin_travel)
if (travel / origin_travel) >= 5.0:
print("path is too long")
find_goal = False
if not self.CollisionCheckWithXY(x, y, self.obstacleList):
print("This path is collision")
find_goal = False
return find_goal, x, y, yaw, v, t, a, d
def choose_parent(self, newNode, nearinds):
if not nearinds:
return newNode
dlist = []
for i in nearinds:
tNode = self.steer(newNode, i)
if tNode is None:
continue
if self.CollisionCheck(tNode, self.obstacleList):
dlist.append(tNode.cost)
else:
dlist.append(float("inf"))
mincost = min(dlist)
minind = nearinds[dlist.index(mincost)]
if mincost == float("inf"):
print("mincost is inf")
return newNode
newNode = self.steer(newNode, minind)
if newNode is None:
return None
return newNode
def pi_2_pi(self, angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
def steer(self, rnd, nind):
# print(rnd)
nearestNode = self.nodeList[nind]
px, py, pyaw, mode, clen = reeds_shepp_path_planning.reeds_shepp_path_planning(
nearestNode.x, nearestNode.y, nearestNode.yaw,
rnd.x, rnd.y, rnd.yaw, unicycle_model.curvature_max, STEP_SIZE)
if px is None:
return None
newNode = copy.deepcopy(nearestNode)
newNode.x = px[-1]
newNode.y = py[-1]
newNode.yaw = pyaw[-1]
newNode.path_x = px
newNode.path_y = py
newNode.path_yaw = pyaw
newNode.cost += sum([abs(c) for c in clen])
newNode.parent = nind
return newNode
def get_random_point(self):
rnd = [random.uniform(self.minrand, self.maxrand),
random.uniform(self.minrand, self.maxrand),
random.uniform(-math.pi, math.pi)
]
node = Node(rnd[0], rnd[1], rnd[2])
return node
def get_best_last_indexs(self):
# print("get_best_last_index")
YAWTH = np.deg2rad(1.0)
XYTH = 0.5
goalinds = []
for (i, node) in enumerate(self.nodeList):
if self.calc_dist_to_goal(node.x, node.y) <= XYTH:
goalinds.append(i)
print("OK XY TH num is")
print(len(goalinds))
# angle check
fgoalinds = []
for i in goalinds:
if abs(self.nodeList[i].yaw - self.end.yaw) <= YAWTH:
fgoalinds.append(i)
print("OK YAW TH num is")
print(len(fgoalinds))
return fgoalinds
def gen_final_course(self, goalind):
path = [[self.end.x, self.end.y, self.end.yaw]]
while self.nodeList[goalind].parent is not None:
node = self.nodeList[goalind]
path_x = reversed(node.path_x)
path_y = reversed(node.path_y)
path_yaw = reversed(node.path_yaw)
for (ix, iy, iyaw) in zip(path_x, path_y, path_yaw):
path.append([ix, iy, iyaw])
# path.append([node.x, node.y])
goalind = node.parent
path.append([self.start.x, self.start.y, self.start.yaw])
path = np.array(path[::-1])
return path
def calc_dist_to_goal(self, x, y):
return np.linalg.norm([x - self.end.x, y - self.end.y])
def find_near_nodes(self, newNode):
nnode = len(self.nodeList)
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
# r = self.expandDis * 5.0
dlist = [(node.x - newNode.x) ** 2 +
(node.y - newNode.y) ** 2 +
(node.yaw - newNode.yaw) ** 2
for node in self.nodeList]
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
return nearinds
def rewire(self, newNode, nearinds):
nnode = len(self.nodeList)
for i in nearinds:
nearNode = self.nodeList[i]
tNode = self.steer(nearNode, nnode - 1)
if tNode is None:
continue
obstacleOK = self.CollisionCheck(tNode, self.obstacleList)
imporveCost = nearNode.cost > tNode.cost
if obstacleOK and imporveCost:
# print("rewire")
self.nodeList[i] = tNode
def DrawGraph(self, rnd=None):
"""
Draw Graph
"""
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.nodeList:
if node.parent is not None:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacleList:
plt.plot(ox, oy, "ok", ms=30 * size)
reeds_shepp_path_planning.plot_arrow(
self.start.x, self.start.y, self.start.yaw)
reeds_shepp_path_planning.plot_arrow(
self.end.x, self.end.y, self.end.yaw)
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def GetNearestListIndex(self, nodeList, rnd):
dlist = [(node.x - rnd.x) ** 2 +
(node.y - rnd.y) ** 2 +
(node.yaw - rnd.yaw) ** 2 for node in nodeList]
minind = dlist.index(min(dlist))
return minind
def CollisionCheck(self, node, obstacleList):
for (ox, oy, size) in obstacleList:
for (ix, iy) in zip(node.path_x, node.path_y):
dx = ox - ix
dy = oy - iy
d = dx * dx + dy * dy
if d <= size ** 2:
return False # collision
return True # safe
def CollisionCheckWithXY(self, x, y, obstacleList):
for (ox, oy, size) in obstacleList:
for (ix, iy) in zip(x, y):
dx = ox - ix
dy = oy - iy
d = dx * dx + dy * dy
if d <= size ** 2:
return False # collision
return True # safe
class Node():
"""
RRT Node
"""
def __init__(self, x, y, yaw):
self.x = x
self.y = y
self.yaw = yaw
self.path_x = []
self.path_y = []
self.path_yaw = []
self.cost = 0.0
self.parent = None
def main():
print("Start rrt start planning")
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(4, 6, 1),
(4, 8, 1),
(4, 10, 1),
(6, 5, 1),
(7, 5, 1),
(8, 6, 1),
(8, 8, 1),
(8, 10, 1)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, np.deg2rad(0.0)]
goal = [6.0, 7.0, np.deg2rad(90.0)]
rrt = RRT(start, goal, randArea=[-2.0, 20.0], obstacleList=obstacleList)
flag, x, y, yaw, v, t, a, d = rrt.Planning(animation=show_animation)
if not flag:
print("cannot find feasible path")
# Draw final path
if show_animation:
rrt.DrawGraph()
plt.plot(x, y, '-r')
plt.grid(True)
plt.pause(0.001)
plt.subplots(1)
plt.plot(t, [np.rad2deg(iyaw) for iyaw in yaw[:-1]], '-r')
plt.xlabel("time[s]")
plt.ylabel("Yaw[deg]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], '-r')
plt.xlabel("time[s]")
plt.ylabel("velocity[km/h]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, a, '-r')
plt.xlabel("time[s]")
plt.ylabel("accel[m/ss]")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [np.rad2deg(td) for td in d], '-r')
plt.xlabel("time[s]")
plt.ylabel("Steering angle[deg]")
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()