Files
PythonRobotics/PathPlanning/InformedRRTStar/informed_rrt_star.py
2019-02-02 16:51:00 +09:00

336 lines
11 KiB
Python

"""
Informed RRT* path planning
author: Karan Chawla
Atsushi Sakai(@Atsushi_twi)
Reference: Informed RRT*: Optimal Sampling-based Path Planning Focused via
Direct Sampling of an Admissible Ellipsoidal Heuristichttps://arxiv.org/pdf/1404.2334.pdf
"""
import random
import numpy as np
import math
import copy
import matplotlib.pyplot as plt
show_animation = True
class InformedRRTStar():
def __init__(self, start, goal,
obstacleList, randArea,
expandDis=0.5, goalSampleRate=10, maxIter=200):
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.expandDis = expandDis
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
self.obstacleList = obstacleList
def InformedRRTStarSearch(self, animation=True):
self.nodeList = [self.start]
# max length we expect to find in our 'informed' sample space, starts as infinite
cBest = float('inf')
pathLen = float('inf')
solutionSet = set()
path = None
# Computing the sampling space
cMin = math.sqrt(pow(self.start.x - self.goal.x, 2)
+ pow(self.start.y - self.goal.y, 2))
xCenter = np.array([[(self.start.x + self.goal.x) / 2.0],
[(self.start.y + self.goal.y) / 2.0], [0]])
a1 = np.array([[(self.goal.x - self.start.x) / cMin],
[(self.goal.y - self.start.y) / cMin], [0]])
etheta = math.atan2(a1[1], a1[0])
# first column of idenity matrix transposed
id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3)
M = a1 @ id1_t
U, S, Vh = np.linalg.svd(M, 1, 1)
C = np.dot(np.dot(U, np.diag(
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh)
for i in range(self.maxIter):
# Sample space is defined by cBest
# cMin is the minimum distance between the start point and the goal
# xCenter is the midpoint between the start and the goal
# cBest changes when a new path is found
rnd = self.informed_sample(cBest, cMin, xCenter, C)
nind = self.getNearestListIndex(self.nodeList, rnd)
nearestNode = self.nodeList[nind]
# steer
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = self.getNewNode(theta, nind, nearestNode)
d = self.lineCost(nearestNode, newNode)
isCollision = self.__CollisionCheck(newNode, self.obstacleList)
isCollisionEx = self.check_collision_extend(nearestNode, theta, d)
if isCollision and isCollisionEx:
nearInds = self.findNearNodes(newNode)
newNode = self.chooseParent(newNode, nearInds)
self.nodeList.append(newNode)
self.rewire(newNode, nearInds)
if self.isNearGoal(newNode):
solutionSet.add(newNode)
lastIndex = len(self.nodeList) - 1
tempPath = self.getFinalCourse(lastIndex)
tempPathLen = self.getPathLen(tempPath)
if tempPathLen < pathLen:
path = tempPath
cBest = tempPathLen
if animation:
self.drawGraph(xCenter=xCenter,
cBest=cBest, cMin=cMin,
etheta=etheta, rnd=rnd)
return path
def chooseParent(self, newNode, nearInds):
if len(nearInds) == 0:
return newNode
dList = []
for i in nearInds:
dx = newNode.x - self.nodeList[i].x
dy = newNode.y - self.nodeList[i].y
d = math.sqrt(dx ** 2 + dy ** 2)
theta = math.atan2(dy, dx)
if self.check_collision_extend(self.nodeList[i], theta, d):
dList.append(self.nodeList[i].cost + d)
else:
dList.append(float('inf'))
minCost = min(dList)
minInd = nearInds[dList.index(minCost)]
if minCost == float('inf'):
print("mincost is inf")
return newNode
newNode.cost = minCost
newNode.parent = minInd
return newNode
def findNearNodes(self, newNode):
nnode = len(self.nodeList)
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
dlist = [(node.x - newNode.x) ** 2
+ (node.y - newNode.y) ** 2 for node in self.nodeList]
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
return nearinds
def informed_sample(self, cMax, cMin, xCenter, C):
if cMax < float('inf'):
r = [cMax / 2.0,
math.sqrt(cMax**2 - cMin**2) / 2.0,
math.sqrt(cMax**2 - cMin**2) / 2.0]
L = np.diag(r)
xBall = self.sampleUnitBall()
rnd = np.dot(np.dot(C, L), xBall) + xCenter
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
else:
rnd = self.sampleFreeSpace()
return rnd
def sampleUnitBall(self):
a = random.random()
b = random.random()
if b < a:
a, b = b, a
sample = (b * math.cos(2 * math.pi * a / b),
b * math.sin(2 * math.pi * a / b))
return np.array([[sample[0]], [sample[1]], [0]])
def sampleFreeSpace(self):
if random.randint(0, 100) > self.goalSampleRate:
rnd = [random.uniform(self.minrand, self.maxrand),
random.uniform(self.minrand, self.maxrand)]
else:
rnd = [self.goal.x, self.goal.y]
return rnd
def getPathLen(self, path):
pathLen = 0
for i in range(1, len(path)):
node1_x = path[i][0]
node1_y = path[i][1]
node2_x = path[i - 1][0]
node2_y = path[i - 1][1]
pathLen += math.sqrt((node1_x - node2_x)
** 2 + (node1_y - node2_y)**2)
return pathLen
def lineCost(self, node1, node2):
return math.sqrt((node1.x - node2.x)**2 + (node1.y - node2.y)**2)
def getNearestListIndex(self, nodes, rnd):
dList = [(node.x - rnd[0])**2
+ (node.y - rnd[1])**2 for node in nodes]
minIndex = dList.index(min(dList))
return minIndex
def __CollisionCheck(self, newNode, obstacleList):
for (ox, oy, size) in obstacleList:
dx = ox - newNode.x
dy = oy - newNode.y
d = dx * dx + dy * dy
if d <= 1.1 * size**2:
return False # collision
return True # safe
def getNewNode(self, theta, nind, nearestNode):
newNode = copy.deepcopy(nearestNode)
newNode.x += self.expandDis * math.cos(theta)
newNode.y += self.expandDis * math.sin(theta)
newNode.cost += self.expandDis
newNode.parent = nind
return newNode
def isNearGoal(self, node):
d = self.lineCost(node, self.goal)
if d < self.expandDis:
return True
return False
def rewire(self, newNode, nearInds):
nnode = len(self.nodeList)
for i in nearInds:
nearNode = self.nodeList[i]
d = math.sqrt((nearNode.x - newNode.x)**2
+ (nearNode.y - newNode.y)**2)
scost = newNode.cost + d
if nearNode.cost > scost:
theta = math.atan2(newNode.y - nearNode.y,
newNode.x - nearNode.x)
if self.check_collision_extend(nearNode, theta, d):
nearNode.parent = nnode - 1
nearNode.cost = scost
def check_collision_extend(self, nearNode, theta, d):
tmpNode = copy.deepcopy(nearNode)
for i in range(int(d / self.expandDis)):
tmpNode.x += self.expandDis * math.cos(theta)
tmpNode.y += self.expandDis * math.sin(theta)
if not self.__CollisionCheck(tmpNode, self.obstacleList):
return False
return True
def getFinalCourse(self, lastIndex):
path = [[self.goal.x, self.goal.y]]
while self.nodeList[lastIndex].parent is not None:
node = self.nodeList[lastIndex]
path.append([node.x, node.y])
lastIndex = node.parent
path.append([self.start.x, self.start.y])
return path
def drawGraph(self, xCenter=None, cBest=None, cMin=None, etheta=None, rnd=None):
plt.clf()
if rnd is not None:
plt.plot(rnd[0], rnd[1], "^k")
if cBest != float('inf'):
self.plot_ellipse(xCenter, cBest, cMin, etheta)
for node in self.nodeList:
if node.parent is not None:
if node.x or node.y is not None:
plt.plot([node.x, self.nodeList[node.parent].x], [
node.y, self.nodeList[node.parent].y], "-g")
for (ox, oy, size) in self.obstacleList:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.goal.x, self.goal.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def plot_ellipse(self, xCenter, cBest, cMin, etheta): # pragma: no cover
a = math.sqrt(cBest**2 - cMin**2) / 2.0
b = cBest / 2.0
angle = math.pi / 2.0 - etheta
cx = xCenter[0]
cy = xCenter[1]
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
x = [a * math.cos(it) for it in t]
y = [b * math.sin(it) for it in t]
R = np.array([[math.cos(angle), math.sin(angle)],
[-math.sin(angle), math.cos(angle)]])
fx = R @ np.array([x, y])
px = np.array(fx[0, :] + cx).flatten()
py = np.array(fx[1, :] + cy).flatten()
plt.plot(cx, cy, "xc")
plt.plot(px, py, "--c")
class Node():
def __init__(self, x, y):
self.x = x
self.y = y
self.cost = 0.0
self.parent = None
def main():
print("Start informed rrt star planning")
# create obstacles
obstacleList = [
(5, 5, 0.5),
(9, 6, 1),
(7, 5, 1),
(1, 5, 1),
(3, 6, 1),
(7, 9, 1)
]
# Set params
rrt = InformedRRTStar(start=[0, 0], goal=[5, 10],
randArea=[-2, 15], obstacleList=obstacleList)
path = rrt.InformedRRTStarSearch(animation=show_animation)
print("Done!!")
# Plot path
if show_animation:
rrt.drawGraph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01)
plt.show()
if __name__ == '__main__':
main()