Files
PythonRobotics/PathPlanning/RRTstar/rrt_star.py
Atsushi Sakai 9c626d3f45 code clean up
2019-02-02 09:50:58 +09:00

279 lines
7.8 KiB
Python

"""
Path Planning Sample Code with RRT*
author: AtsushiSakai(@Atsushi_twi)
"""
import random
import math
import copy
import numpy as np
import matplotlib.pyplot as plt
show_animation = True
class RRT():
"""
Class for RRT Planning
"""
def __init__(self, start, goal, obstacleList, randArea,
expandDis=0.5, goalSampleRate=20, maxIter=500):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Ramdom Samping Area [min,max]
"""
self.start = Node(start[0], start[1])
self.end = Node(goal[0], goal[1])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.expandDis = expandDis
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
self.obstacleList = obstacleList
def Planning(self, animation=True):
"""
Pathplanning
animation: flag for animation on or off
"""
self.nodeList = [self.start]
for i in range(self.maxIter):
rnd = self.get_random_point()
nind = self.GetNearestListIndex(self.nodeList, rnd)
newNode = self.steer(rnd, nind)
# print(newNode.cost)
if self.__CollisionCheck(newNode, self.obstacleList):
nearinds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearinds)
self.nodeList.append(newNode)
self.rewire(newNode, nearinds)
if animation and i % 5 == 0:
self.DrawGraph(rnd)
# generate coruse
lastIndex = self.get_best_last_index()
if lastIndex is None:
return None
path = self.gen_final_course(lastIndex)
return path
def choose_parent(self, newNode, nearinds):
if not nearinds:
return newNode
dlist = []
for i in nearinds:
dx = newNode.x - self.nodeList[i].x
dy = newNode.y - self.nodeList[i].y
d = math.sqrt(dx ** 2 + dy ** 2)
theta = math.atan2(dy, dx)
if self.check_collision_extend(self.nodeList[i], theta, d):
dlist.append(self.nodeList[i].cost + d)
else:
dlist.append(float("inf"))
mincost = min(dlist)
minind = nearinds[dlist.index(mincost)]
if mincost == float("inf"):
print("mincost is inf")
return newNode
newNode.cost = mincost
newNode.parent = minind
return newNode
def steer(self, rnd, nind):
# expand tree
nearestNode = self.nodeList[nind]
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = Node(rnd[0], rnd[1])
currentDistance = math.sqrt(
(rnd[1] - nearestNode.y) ** 2 + (rnd[0] - nearestNode.x) ** 2)
# Find a point within expandDis of nind, and closest to rnd
if currentDistance <= self.expandDis:
pass
else:
newNode.x = nearestNode.x + self.expandDis * math.cos(theta)
newNode.y = nearestNode.y + self.expandDis * math.sin(theta)
newNode.cost = float("inf")
newNode.parent = None
return newNode
def get_random_point(self):
if random.randint(0, 100) > self.goalSampleRate:
rnd = [random.uniform(self.minrand, self.maxrand),
random.uniform(self.minrand, self.maxrand)]
else: # goal point sampling
rnd = [self.end.x, self.end.y]
return rnd
def get_best_last_index(self):
disglist = [self.calc_dist_to_goal(
node.x, node.y) for node in self.nodeList]
goalinds = [disglist.index(i) for i in disglist if i <= self.expandDis]
if not goalinds:
return None
mincost = min([self.nodeList[i].cost for i in goalinds])
for i in goalinds:
if self.nodeList[i].cost == mincost:
return i
return None
def gen_final_course(self, goalind):
path = [[self.end.x, self.end.y]]
while self.nodeList[goalind].parent is not None:
node = self.nodeList[goalind]
path.append([node.x, node.y])
goalind = node.parent
path.append([self.start.x, self.start.y])
return path
def calc_dist_to_goal(self, x, y):
return np.linalg.norm([x - self.end.x, y - self.end.y])
def find_near_nodes(self, newNode):
nnode = len(self.nodeList)
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
# r = self.expandDis * 5.0
dlist = [(node.x - newNode.x) ** 2 +
(node.y - newNode.y) ** 2 for node in self.nodeList]
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
return nearinds
def rewire(self, newNode, nearinds):
nnode = len(self.nodeList)
for i in nearinds:
nearNode = self.nodeList[i]
dx = newNode.x - nearNode.x
dy = newNode.y - nearNode.y
d = math.sqrt(dx ** 2 + dy ** 2)
scost = newNode.cost + d
if nearNode.cost > scost:
theta = math.atan2(dy, dx)
if self.check_collision_extend(nearNode, theta, d):
nearNode.parent = nnode - 1
nearNode.cost = scost
def check_collision_extend(self, nearNode, theta, d):
tmpNode = copy.deepcopy(nearNode)
for i in range(int(d / self.expandDis)):
tmpNode.x += self.expandDis * math.cos(theta)
tmpNode.y += self.expandDis * math.sin(theta)
if not self.__CollisionCheck(tmpNode, self.obstacleList):
return False
return True
def DrawGraph(self, rnd=None):
"""
Draw Graph
"""
plt.clf()
if rnd is not None:
plt.plot(rnd[0], rnd[1], "^k")
for node in self.nodeList:
if node.parent is not None:
plt.plot([node.x, self.nodeList[node.parent].x], [
node.y, self.nodeList[node.parent].y], "-g")
for (ox, oy, size) in self.obstacleList:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def GetNearestListIndex(self, nodeList, rnd):
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1])
** 2 for node in nodeList]
minind = dlist.index(min(dlist))
return minind
def __CollisionCheck(self, node, obstacleList):
for (ox, oy, size) in obstacleList:
dx = ox - node.x
dy = oy - node.y
d = dx * dx + dy * dy
if d <= size ** 2:
return False # collision
return True # safe
class Node():
"""
RRT Node
"""
def __init__(self, x, y):
self.x = x
self.y = y
self.cost = 0.0
self.parent = None
def main():
print("Start rrt planning")
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2)
] # [x,y,size(radius)]
# Set Initial parameters
rrt = RRT(start=[0, 0], goal=[10, 10],
randArea=[-2, 15], obstacleList=obstacleList)
path = rrt.Planning(animation=show_animation)
if path is None:
print("Cannot find path")
else:
print("found path!!")
# Draw final path
if show_animation:
rrt.DrawGraph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01) # Need for Mac
plt.show()
if __name__ == '__main__':
main()