Files
PythonRobotics/PathTracking/stanley_controller/stanley_controller.py
Atsushi Sakai 76b0d04a3c using pathlib based local module import (#722)
* using pathlib based local module import

* remove unused import
2022-09-11 07:21:37 +09:00

218 lines
5.8 KiB
Python

"""
Path tracking simulation with Stanley steering control and PID speed control.
author: Atsushi Sakai (@Atsushi_twi)
Ref:
- [Stanley: The robot that won the DARPA grand challenge](http://isl.ecst.csuchico.edu/DOCS/darpa2005/DARPA%202005%20Stanley.pdf)
- [Autonomous Automobile Path Tracking](https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf)
"""
import numpy as np
import matplotlib.pyplot as plt
import sys
import pathlib
sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
from PathPlanning.CubicSpline import cubic_spline_planner
k = 0.5 # control gain
Kp = 1.0 # speed proportional gain
dt = 0.1 # [s] time difference
L = 2.9 # [m] Wheel base of vehicle
max_steer = np.radians(30.0) # [rad] max steering angle
show_animation = True
class State(object):
"""
Class representing the state of a vehicle.
:param x: (float) x-coordinate
:param y: (float) y-coordinate
:param yaw: (float) yaw angle
:param v: (float) speed
"""
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
"""Instantiate the object."""
super(State, self).__init__()
self.x = x
self.y = y
self.yaw = yaw
self.v = v
def update(self, acceleration, delta):
"""
Update the state of the vehicle.
Stanley Control uses bicycle model.
:param acceleration: (float) Acceleration
:param delta: (float) Steering
"""
delta = np.clip(delta, -max_steer, max_steer)
self.x += self.v * np.cos(self.yaw) * dt
self.y += self.v * np.sin(self.yaw) * dt
self.yaw += self.v / L * np.tan(delta) * dt
self.yaw = normalize_angle(self.yaw)
self.v += acceleration * dt
def pid_control(target, current):
"""
Proportional control for the speed.
:param target: (float)
:param current: (float)
:return: (float)
"""
return Kp * (target - current)
def stanley_control(state, cx, cy, cyaw, last_target_idx):
"""
Stanley steering control.
:param state: (State object)
:param cx: ([float])
:param cy: ([float])
:param cyaw: ([float])
:param last_target_idx: (int)
:return: (float, int)
"""
current_target_idx, error_front_axle = calc_target_index(state, cx, cy)
if last_target_idx >= current_target_idx:
current_target_idx = last_target_idx
# theta_e corrects the heading error
theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw)
# theta_d corrects the cross track error
theta_d = np.arctan2(k * error_front_axle, state.v)
# Steering control
delta = theta_e + theta_d
return delta, current_target_idx
def normalize_angle(angle):
"""
Normalize an angle to [-pi, pi].
:param angle: (float)
:return: (float) Angle in radian in [-pi, pi]
"""
while angle > np.pi:
angle -= 2.0 * np.pi
while angle < -np.pi:
angle += 2.0 * np.pi
return angle
def calc_target_index(state, cx, cy):
"""
Compute index in the trajectory list of the target.
:param state: (State object)
:param cx: [float]
:param cy: [float]
:return: (int, float)
"""
# Calc front axle position
fx = state.x + L * np.cos(state.yaw)
fy = state.y + L * np.sin(state.yaw)
# Search nearest point index
dx = [fx - icx for icx in cx]
dy = [fy - icy for icy in cy]
d = np.hypot(dx, dy)
target_idx = np.argmin(d)
# Project RMS error onto front axle vector
front_axle_vec = [-np.cos(state.yaw + np.pi / 2),
-np.sin(state.yaw + np.pi / 2)]
error_front_axle = np.dot([dx[target_idx], dy[target_idx]], front_axle_vec)
return target_idx, error_front_axle
def main():
"""Plot an example of Stanley steering control on a cubic spline."""
# target course
ax = [0.0, 100.0, 100.0, 50.0, 60.0]
ay = [0.0, 0.0, -30.0, -20.0, 0.0]
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
ax, ay, ds=0.1)
target_speed = 30.0 / 3.6 # [m/s]
max_simulation_time = 100.0
# Initial state
state = State(x=-0.0, y=5.0, yaw=np.radians(20.0), v=0.0)
last_idx = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_idx, _ = calc_target_index(state, cx, cy)
while max_simulation_time >= time and last_idx > target_idx:
ai = pid_control(target_speed, state.v)
di, target_idx = stanley_control(state, cx, cy, cyaw, target_idx)
state.update(ai, di)
time += dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.plot(cx[target_idx], cy[target_idx], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4])
plt.pause(0.001)
# Test
assert last_idx >= target_idx, "Cannot reach goal"
if show_animation: # pragma: no cover
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()