Files
PythonRobotics/SLAM/GraphBasedSLAM/graph_based_slam.py
Atsushi Sakai 0d53101549 keep coding..
2018-03-26 18:18:44 -07:00

311 lines
7.4 KiB
Python

"""
Graph SLAM example
author: Atsushi Sakai (@Atsushi_twi)
"""
import numpy as np
import math
import copy
import itertools
import matplotlib.pyplot as plt
# Simulation parameter
Qsim = np.diag([0.2, math.radians(1.0)])**2
Rsim = np.diag([1.0, math.radians(10.0)])**2
DT = 1.0 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
STATE_SIZE = 3 # State size [x,y,yaw]
# Covariance parameter of Graph Based SLAM
C_SIGMA1 = 1.0
C_SIGMA2 = 0.1
C_SIGMA3 = 0.1
MAX_ITR = 20 # Maximuma iteration
show_animation = True
class Edge():
def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d_t = 0.0
self.d_td = 0.0
self.yaw_t = 0.0
self.yaw_td = 0.0
self.angle_t = 0.0
self.angle_td = 0.0
self.id1 = 0
self.id2 = 0
def cal_observation_sigma(d):
sigma = np.zeros((3, 3))
sigma[0, 0] = (d * C_SIGMA1)**2
sigma[1, 1] = (d * C_SIGMA2)**2
sigma[2, 2] = C_SIGMA3**2
return sigma
def calc_rotational_matrix(angle):
Rt = np.matrix([[math.cos(angle), -math.sin(angle), 0],
[math.sin(angle), math.cos(angle), 0],
[0, 0, 1.0]])
return Rt
def calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
anglet, phit, dtd, angletd, phitd, t, td):
edge = Edge()
tangle1 = pi_2_pi(yawt + anglet)
tangle2 = pi_2_pi(yawt + anglet)
t1 = dt * math.cos(tangle1)
t2 = dtd * math.cos(tangle2)
t3 = dt * math.sin(tangle1)
t4 = dtd * math.sin(tangle2)
edge.e[0, 0] = xtd - xt - t1 + t2
edge.e[1, 0] = ytd - yt - t3 + t4
edge.e[2, 0] = pi_2_pi(yawtd - yawt - phit + phitd)
sig_t = cal_observation_sigma(dt)
sig_td = cal_observation_sigma(dtd)
Rt = calc_rotational_matrix(tangle1)
Rtd = calc_rotational_matrix(tangle2)
edge.omega = np.linalg.inv(Rt * sig_t * Rt.T + Rtd * sig_td * Rtd.T)
edge.d_t, edge.d_td = dt, dtd
edge.yaw_t, edge.yaw_td = yawt, yawtd
edge.angle_t, edge.angle_td = anglet, angletd
edge.id1, edge.id2 = t, td
return edge
def calc_edges(xlist, zlist):
edges = []
zids = list(itertools.combinations(range(len(zlist)), 2))
for (t, td) in zids:
# print(xlist)
# print(zlist)
xt, yt, yawt = xlist[0, t], xlist[1, t], xlist[2, t]
xtd, ytd, yawtd = xlist[0, td], xlist[1, td], xlist[2, td]
# print(zlist[t])
# print(zlist[td])
for iz1 in range(len(zlist[t][:, 0])):
for iz2 in range(len(zlist[td][:, 0])):
if zlist[t][iz1, 3] == zlist[td][iz2, 3]:
dt, anglet, phit = zlist[t][iz1,
0], zlist[t][iz1, 1], zlist[t][iz1, 2]
dtd, angletd, phitd = zlist[td][iz2,
0], zlist[td][iz2, 1], zlist[td][iz2, 2]
edge = calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
anglet, phit, dtd, angletd, phitd, t, td)
edges.append(edge)
break
return edges
def calc_jacobian(edge):
t = edge.yaw_t + edge.angle_t
A = np.matrix([[-1.0, 0, edge.d_t * math.sin(t)],
[0, -1.0, -edge.d_t * math.cos(t)],
[0, 0, -1.0]])
td = edge.yaw_td + edge.angle_td
B = np.matrix([[1.0, 0, -edge.d_td * math.sin(td)],
[0, 1.0, edge.d_td * math.cos(td)],
[0, 0, 1.0]])
return A, B
def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge)
id1 = edge.id1 * 3
id2 = edge.id2 * 3
H[id1:id1 + 3, id1:id1 + 3] += A.T * edge.omega * A
H[id1:id1 + 3, id2:id2 + 3] += A.T * edge.omega * B
H[id2:id2 + 3, id1:id1 + 3] += B.T * edge.omega * A
H[id2:id2 + 3, id2:id2 + 3] += B.T * edge.omega * B
b[id1:id1 + 3, 0] += (A.T * edge.omega * edge.e)
b[id2:id2 + 3, 0] += (B.T * edge.omega * edge.e)
return H, b
def graph_based_slam(u, z, hxDR, hz):
print("start graph based slam")
x_opt = copy.deepcopy(hxDR)
n = len(hz) * 3
# return x_opt
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, hz)
# print("n edges:", len(edges))
H = np.matrix(np.zeros((n, n)))
b = np.matrix(np.zeros((n, 1)))
for edge in edges:
H, b = fill_H_and_b(H, b, edge)
H[0:3, 0:3] += np.identity(3) * 10000 # to fix origin
dx = - np.linalg.inv(H).dot(b)
# print(dx)
for i in range(len(hz)):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
diff = dx.T.dot(dx)
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break
# print(x_opt)
return x_opt
def calc_input():
v = 1.0 # [m/s]
yawrate = 0.1 # [rad/s]
u = np.matrix([v, yawrate]).T
return u
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.matrix(np.zeros((0, 4)))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.sqrt(dx**2 + dy**2)
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = pi_2_pi(math.atan2(dy, dx))
if d <= MAX_RANGE:
dn = d + np.random.randn() * Qsim[0, 0] # add noise
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
zi = np.matrix([dn, anglen, phi, i])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1]
ud = np.matrix([ud1, ud2]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
def motion_model(x, u):
F = np.matrix([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F * x + B * u
return x
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0]])
# State Vector [x y yaw v]'
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
# history
hxTrue = xTrue
hxDR = xTrue
hz = []
while SIM_TIME >= time:
time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
hxDR = np.hstack((hxDR, xDR))
hz.append(z)
# store data history
hxTrue = np.hstack((hxTrue, xTrue))
x_opt = graph_based_slam(ud, z, hxDR, hz)
if show_animation:
plt.cla()
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(np.array(hxTrue[0, :]).flatten(),
np.array(hxTrue[1, :]).flatten(), "-b")
plt.plot(np.array(hxDR[0, :]).flatten(),
np.array(hxDR[1, :]).flatten(), "-k")
plt.plot(np.array(x_opt[0, :]).flatten(),
np.array(x_opt[1, :]).flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()