mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-23 07:27:59 -05:00
1582 lines
315 KiB
Plaintext
1582 lines
315 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# EKF SLAM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAANoCAYAAACiJHG1AAAMSGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvYlSpEsJoUUQkCrYCEkgocSQEETsLssquHYRAXVFV0VcdC2ArBW7sgj2/lAWlZV1sWBD5U0KrOt+773vne+be/+cOec/JXPvnQFAp4YnleaiugDkSQpk8REhrCmpaSxSN0AAHegDHcDk8eVSdlxcNIAyfP+7vLkBraFcdVFy/XP+v4qeQCjnA4DEQZwhkPPzID4IAF7Cl8oKACD6QL317AKpEk+D2EAGE4RYqsRZalyixBlqXKmySYznQLwHADKNx5NlAaDdDPWsQn4W5NG+BbGrRCCWAKBDhjiQL+IJII6EeExe3iwlhnbAIeMLnqy/cWaMcPJ4WSNYXYtKyKFiuTSXN+f/bMf/lrxcxXAMOzhoIllkvLJm2LdbObOilJgGcZ8kIyYWYn2I34kFKnuIUapIEZmktkdN+XIO7BlgQuwq4IVGQWwKcbgkNyZao8/IFIdzIYYrBC0SF3ATNb5LhfKwBA1njWxWfOwwzpRx2BrfBp5MFVdpf1qRk8TW8N8SCbnD/K+LRYkp6pwxaqE4OQZibYiZ8pyEKLUNZlMs4sQM28gU8cr8bSD2E0oiQtT82IxMWXi8xl6WJx+uF1sqEnNjNLiqQJQYqeHZw+ep8jeCuFkoYScN8wjlU6KHaxEIQ8PUtWMdQkmSpl6sS1oQEq/xfSnNjdPY41RhboRSbwWxqbwwQeOLBxbABanmx2OkBXGJ6jzxjGzexDh1PngRiAYcEApYQAFHBpgFsoG4va+pD/5Sz4QDHpCBLCAELhrNsEeKakYCrwmgGPwBkRDIR/xCVLNCUAj1n0a06qsLyFTNFqo8csBjiPNAFMiFvxUqL8lItGTwG9SI/xGdD3PNhUM5908dG2qiNRrFMC9LZ9iSGEYMJUYSw4mOuAkeiPvj0fAaDIc77oP7Dmf7lz3hMaGT8IhwndBFuD1TvET2VT0sMAl0wQjhmpozvqwZt4OsnngIHgD5ITfOxE2ACz4eRmLjQTC2J9RyNJkrq/+a+281fNF1jR3FlYJSRlGCKQ5fe2o7aXuOsCh7+mWH1LlmjPSVMzLzdXzOF50WwHvU15bYUuwAdg47iV3AjmBNgIUdx5qxNuyoEo+sot9Uq2g4WrwqnxzII/5HPJ4mprKTctd6117Xj+q5AmGR8v0IOLOkc2TiLFEBiw3f/EIWV8IfO4bl7urmC4DyO6J+Tb1iqr4PCPPiX7r8EwD4lkFl1l86njUAhx8DwHjzl876JXw8VgFwtIOvkBWqdbjyQgBU+HUyAMbAHFgDB1iPO/AC/iAYhIGJIBYkglQwA3ZZBNezDMwG88BiUArKwSqwHlSBLWAb2AV+AvtBEzgCToKz4BLoANfBXbh6esAz0A/egEEEQUgIHWEgxogFYos4I+6IDxKIhCHRSDySiqQjWYgEUSDzkG+QcmQNUoVsReqQn5HDyEnkAtKJ3EYeIr3IS+QDiqE01AA1Q+3QcagPykaj0ER0OpqF5qPFaAm6Aq1Ea9E9aCN6Er2EXke70GfoAAYwLYyJWWIumA/GwWKxNCwTk2ELsDKsAqvFGrAW+D9fxbqwPuw9TsQZOAt3gSs4Ek/C+Xg+vgBfjlfhu/BG/DR+FX+I9+OfCXSCKcGZ4EfgEqYQsgizCaWECsIOwiHCGfg09RDeEIlEJtGe6A2fxlRiNnEucTlxE3Ev8QSxk9hNHCCRSMYkZ1IAKZbEIxWQSkkbSXtIx0lXSD2kd2QtsgXZnRxOTiNLyEvIFeTd5GPkK+Qn5EGKLsWW4keJpQgocygrKdspLZTLlB7KIFWPak8NoCZSs6mLqZXUBuoZ6j3qKy0tLSstX63JWmKtRVqVWvu0zms91HpP06c50Ti0aTQFbQVtJ+0E7TbtFZ1Ot6MH09PoBfQV9Dr6KfoD+jtthvZYba62QHuhdrV2o/YV7ec6FB1bHbbODJ1inQqdAzqXdfp0Kbp2uhxdnu4C3Wrdw7o3dQf0GHpuerF6eXrL9XbrXdB7qk/St9MP0xfol+hv0z+l383AGNYMDoPP+IaxnXGG0WNANLA34BpkG5Qb/GTQbtBvqG843jDZsMiw2vCoYRcTY9oxucxc5krmfuYN5odRZqPYo4Sjlo1qGHVl1Fuj0UbBRkKjMqO9RteNPhizjMOMc4xXGzcZ3zfBTZxMJpvMNtlscsakb7TBaP/R/NFlo/ePvmOKmjqZxpvONd1m2mY6YGZuFmEmNdtodsqsz5xpHmyebb7O/Jh5rwXDItBCbLHO4rjF7yxDFpuVy6pknWb1W5paRloqLLdatlsOWtlbJVktsdprdd+aau1jnWm9zrrVut/GwmaSzTybeps7thRbH1uR7Qbbc7Zv7eztUuy+s2uye2pvZM+1L7avt7/nQHcIcsh3qHW45kh09HHMcdzk2OGEOnk6iZyqnS47o85ezmLnTc6dYwhjfMdIxtSOuelCc2G7FLrUuzwcyxwbPXbJ2Kaxz8fZjEsbt3rcuXGfXT1dc123u95103eb6LbErcXtpbuTO9+92v2aB90j3GOhR7PHi/HO44XjN4+/5cnwnOT5nWer5ycvby+ZV4NXr7eNd7p3jfdNHwOfOJ/lPud9Cb4hvgt9j/i+9/PyK/Db7/env4t/jv9u/6cT7CcIJ2yf0B1gFcAL2BrQFcgKTA/8IbAryDKIF1Qb9CjYOlgQvCP4CduRnc3ew34e4hoiCzkU8pbjx5nPORGKhUaEloW2h+mHJYVVhT0ItwrPCq8P74/wjJgbcSKSEBkVuTryJteMy+fWcfsnek+cP/F0FC0qIaoq6lG0U7QsumUSOmnipLWT7sXYxkhimmJBLDd2bez9OPu4/LhfJhMnx02unvw43i1+Xvy5BEbCzITdCW8SQxJXJt5NckhSJLUm6yRPS65LfpsSmrImpWvKuCnzp1xKNUkVpzankdKS03akDUwNm7p+as80z2ml025Mt59eNP3CDJMZuTOOztSZyZt5IJ2QnpK+O/0jL5ZXyxvI4GbUZPTzOfwN/GeCYME6Qa8wQLhG+CQzIHNN5tOsgKy1Wb2iIFGFqE/MEVeJX2RHZm/JfpsTm7MzZyg3JXdvHjkvPe+wRF+SIzk9y3xW0axOqbO0VNqV75e/Pr9fFiXbIUfk0+XNBQZww96mcFB8q3hYGFhYXfhudvLsA0V6RZKitjlOc5bNeVIcXvzjXHwuf27rPMt5i+c9nM+ev3UBsiBjQetC64UlC3sWRSzatZi6OGfxr0tcl6xZ8vqblG9aSsxKFpV0fxvxbX2pdqms9OZ3/t9tWYovFS9tX+axbOOyz2WCsovlruUV5R+X85df/N7t+8rvh1Zkrmhf6bVy8yriKsmqG6uDVu9ao7emeE332klrG9ex1pWte71+5voLFeMrtmygblBs6KqMrmzeaLNx1caPVaKq69Uh1XtrTGuW1bzdJNh0ZXPw5oYtZlvKt3z4QfzDra0RWxtr7WorthG3FW57vD15+7kffX6s22Gyo3zHp52SnV274nedrvOuq9ttuntlPVqvqO/dM21Px0+hPzU3uDRs3cvcW74P7FPs+/3n9J9v7I/a33rA50DDQduDNYcYh8oakcY5jf1Noqau5tTmzsMTD7e2+Lcc+mXsLzuPWB6pPmp4dOUx6rGSY0PHi48PnJCe6DuZdbK7dWbr3VNTTl07Pfl0+5moM+fPhp89dY597vj5gPNHLvhdOHzR52LTJa9LjW2ebYd+9fz1ULtXe+Nl78vNHb4dLZ0TOo9dCbpy8mro1bPXuNcuXY+53nkj6catm9Nudt0S3Hp6O/f2izuFdwbvLrpHuFd2X/d+xQPTB7X/cvzX3i6vrqMPQx+2PUp4dLeb3/3sN/lvH3tKHtMfVzyxeFL31P3pkd7w3o7fp/7e80z6bLCv9A+9P2qeOzw/+Gfwn239U/p7XsheDL1c/sr41c7X41+3DsQNPHiT92bwbdk743e73vu8P/ch5cOTwdkfSR8rPzl+avkc9fneUN7QkJQn46m2AhgcaGYmAC93AkBPhXuHDgCoU9XnPJUg6rOpCoH/hNVnQZV4AbAzGICkRQBEwz3KZjhsIabBu3KrnhgMUA+PkaEReaaHu5qLBk88hHdDQ6/MACC1APBJNjQ0uGlo6NN2mOxtAE7kq8+XSiHCs8EPRkrUdlMXfC3/Bt/Mfk3hn2jmAAAACXBIWXMAABYlAAAWJQFJUiTwAAABnmlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTY0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjg3MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgqYwCqRAAAAHGlET1QAAAACAAAAAAAAAbQAAAAoAAABtAAAAbQAAP4D405cAwAAQABJREFUeAHsnQecE0UDxV9ylePg6L0rNpogKCBNRRFFQQQ7WBEVQVBRERBUUClir4AUlWoDUUEFRRBQmh9SRGkiIL1zHNfyzSzesZt22c0kt0ne/n7HZWp2/vPI3rxMcbjEBV4kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8B8BBw0jaoEESIAESIAESIAESIAESIAESIAESIAESEBPgIaRngZfkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJgIYRRUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkYh0kBmZib++usvrfaSJUsiPj4+RO/EakmABEiABEiABEiABEiABEiABEggdglkZ2fj0KFDGoDatWsjMTExdmEobDkNI4Uw9VWtW7cOdevW1UfxNQmQAAmQAAmQAAmQAAmQAAmQAAmQQAgJrF27FnXq1AnhO8RO1TSMQtTXNIxCBJbVkgAJkAAJkAAJkAAJkAAJkAAJkIAPAjSMfICxEE3DyAK0QIrs2rULlStX1rKuXLkSVapUCaQY85CAVwIZGRlYvny5ltakSRMkJyd7zcdIEgiEAPUUCCXmCYQAtRQIJeYJlAD1FCgp5guEAPUUCCXmCZQA9RQoqcLLt2/fvvwVPjt37kSlSpUK72ai6J1pGIWoM/fu3Yvy5ctrtf/999+oVq1aiN6J1cYCgVOnTmHJkiVaU5s3b46kpKRYaDbbGCIC1FOIwMZgtdRSDHZ6CJtMPYUQbgxWTT3FYKeHsMnUUwjhKqpaP/7es2cPypUrp6jm2K6GhlGI+l8vWBpGIYIcQ9XyIRVDnR2GplJPYYAcI29BLcVIR4epmdRTmEDHyNtQTzHS0WFqJvUUJtBBvI1+/E3DKAiQbkVpGLkBURXUC5aGkSqqsVsPH1Kx2/ehaDn1FAqqsVkntRSb/R6qVlNPoSIbm/VST7HZ76FqNfUUKrLq6tWPv2kYqeNKw0gdS0NNesHSMDKgYcACAT6kLEBjEZ8EqCefaJhgkgC1ZBIYs/slQD35xcNEkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgCNRXwSoJ58omGCSQLUkklgzO6XAPXkFw8TTRKgnkwCY3a/BKgnv3hskagff9MwUtclNIzUsTTUpBcsDSMDGgYsEOBDygI0FvFJgHryiYYJJglQSyaBMbtfAtSTXzxMNEmAejIJjNn9EqCe/OKxRaJ+/E3DSF2X0DBSx9JQk16wNIwMaBiwQIAPKQvQWMQnAerJJxommCRALZkExux+CVBPfvEw0SQB6skkMGb3S4B68ovHFon68TcNI3VdQsNIHUtDTXrB0jAyoGHAAgE+pCxAYxGfBKgnn2iYYJIAtWQSGLP7JUA9+cXDRJMEqCeTwJjdLwHqyS8eWyTqx980jNR1CQ0jdSwNNekFS8PIgIYBCwT4kLIAjUV8EqCefKJhgkkC1JJJYMzulwD15BcPE00SoJ5MAmN2vwSoJ794bJGoH3/TMFLXJTSM1LE01KQXLA0jAxoGLBDgQ8oCNBbxSYB68omGCSYJUEsmgTG7XwLUk188TDRJgHoyCYzZ/RKgnvzisUWifvxNw0hdl9AwUsfSUJNesDSMDGgYsECADykL0FjEJwHqyScaJpgkQC2ZBMbsfglQT37xMNEkAerJJDBm90uAevKLxxaJ+vE3DSN1XULDSB1LQ016wdIwMqBhwAIBPqQsQGMRnwSoJ59omGCSALVkEhiz+yVAPfnFw0STBKgnk8CY3S8B6skvHlsk6sffNIzUdQkNI3UsDTXpBUvDyICGAQsE+JCyAI1FfBKgnnyiYYJJAtSSSWDM7pcA9eQXDxNNEqCeTAJjdr8EqCe/eGyRqB9/0zBS1yU0jNSxNNSkFywNIwMaBiwQ4EPKAjQW8UmAevKJhgkmCVBLJoExu18C1JNfPEw0SYB6MgmM2f0SoJ784rFFon78TcNIXZfQMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCcB6sknGiaYJEAtmQTG7H4JUE9+8TDRJAHqySQwZvdLgHryi8cWifrxNw0jdV1Cw0gdS0NNesHSMDKgYcACAT6kLEBjEZ8EqCefaJhgkgC1ZBIYs/slQD35xcNEkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgCNRXwSoJ58omGCSQLUkklgzO6XAPXkFw8TTRKgnkwCY3a/BKgnv3hskagff9MwUtclNIzUsTTUpBcsDSMDGgYsEOBDygI0FvFJgHryiYYJJglQSyaBMbtfAtSTXzxMNEmAejIJjNn9EqCe/OKxRaJ+/E3DSF2X0DBSx9JQk16wNIwMaBiwQIAPKQvQWMQnAerJJxommCRALZkExux+CVBPfvEw0SQB6skkMGb3S4B68ovHFon68TcNI3VdQsNIHUtDTXrB0jAyoGHAAgE+pCxAYxGfBKgnn2iYYJIAtWQSGLP7JUA9+cXDRJMEqCeTwJjdLwHqyS8eWyTqx980jNR1CQ0jdSwNNekFS8PIgIYBCwT4kLIAjUV8EqCefKJhgkkC1JJJYMzulwD15BcPE00SoJ5MAmN2vwSoJ794bJGoH3/TMFLXJTSM1LE01KQXLA0jAxoGLBDgQ8oCNBbxSYB68omGCSYJUEsmgTG7XwLUk188TDRJgHoyCYzZ/RKgnvzisUWifvxNw0hdl9AwUsfSUJNesDSMDGgYsECADykL0FjEJwHqyScaJpgkQC2ZBMbsfglQT37xMNEkAerJJDBm90uAevKLxxaJ+vE3DSN1XULDSB1LQ016wdIwMqBhwAIBPqQsQGMRnwSoJ59omGCSALVkEhiz+yVAPfnFw0STBKgnk8CY3S8B6skvHlsk6sffNIzUdQkNI3UsDTXpBUvDyICGAQsE+JCyAI1FfBKgnnyiYYJJAtSSSWDM7pcA9eQXDxNNEqCeTAJjdr8EqCe/eGyRqB9/0zBS1yU0jNSxNNSkFywNIwMaBiwQ4EPKAjQW8UmAevKJhgkmCVBLJoExu18C1JNfPEw0SYB6MgmM2f0SoJ784rFFon78TcNIXZfQMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCcB6sknGiaYJEAtmQTG7H4JUE9+8TDRJAHqySQwZvdLgHryi8cWifrxNw0jdV1Cw0gdS0NNesHSMDKgYcACAT6kLEBjEZ8EqCefaJhgkgC1ZBIYs/slQD35xcNEkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgCNRXwSoJ58omGCSQLUkklgzO6XAPXkFw8TTRKgnkwCY3a/BKgnv3hskagff9MwUtclNIzUsTTUpBcsDSMDGgYsEOBDygI0FvFJgHryicYWCS6XC7KPMjIycPLkSe33mjW/49Chg7jwwgsh0/U/8qZlODc31yM+Pj4e3n4SExORnJyMpKQk7bfM43A4TLefWjKNjAX8EKCe/MBhkmkC1JNpZCzghwD15AeOTZL0428aRuo6hYaROpaGmvSCpWFkQMOABQJ8SFmAxiI+CVBPPtEoT5BGztGjR7F//37s27dP+5k/fz5ee+21/Pdq1aqVZgzlpaenp2vGT36GMLxwOp0oWrQoSpQogdTUVBQrVkz7LePyfmSa/ElLS8v/kabTli1bkJKSgjat26BCxQqaCRWGW+ZbRCEBfjZFYacWYpOop0KEH4VvTT3Zv1P1428aRur6i4aROpaGmvSCpWFkQMOABQJ8SFmAxiI+CVBPPtEEnJCZmYmDBw9qBpA0g+RnvvzjZPfu3drPjh07sH37dmzevBnZ2dkB1xsNGaXZVKNGDVSuXBmVKlVCuXLltJ+yZcuiTJkyKF26NEqWLImE+AQUK15MM8tkXl4kwM8makAlAepJJU3WRT3ZXwP68TcNI3X9RcNIHUtDTXrB0jAyoGHAAgE+pCxAYxGfBKgnn2gMCXJm0Lat27Bl6xZs3bpV+1mxYgWWLl1qyMeAWgLt27fHkCFD0KRJE8iZT7xihwA/m2Knr8PRUuopHJRj5z2oJ/v3tX78TcNIXX/RMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCcB6ukMGvkHxbJlv4j9e4ADBw5g48aN2LBhA1auXImdO3eeyWijV6VKldKMFLnnkDRU5O+4uLj813lx8pblTCj5I/dDkv0uZzvJvY4i7XrwwQfx+uuva/sxRdq9834DJ8DPpsBZMWfBBKinghkxR+AEqKfAWRVWTv34m4aRul6gYaSOpaEmvWBpGBnQMGCBAB9SFqCxiE8CsaonuYH0M888g9GjR/tkE8qEChUqoGbNmli/fj2OHDmivZWcTdOtWzdtiVbx4sW1fYPkfkByb6AiRYpov+VraQipuqRhlJWVlb+xtjSTtJ+T4vepMxtt6zfdPn78uLYX0+HDhyF/Dh06lL8vk1x6d+LEibAYUZKVnPkl91l6ov8TqN+gviosrMcGBGL1s8kG6KPyFqinqOzWQmsU9VRo6AN+Y/34m4ZRwNgKzEjDqEBE1jLoBUvDyBpDljpDgA+pMyz4KngCsaInaWL8/vvvWL58OUaNGoV//vkneHheajjvvPNQrVo1VKlSBdIUkj9y357y5ctre/bIvXvkrKCEhAQvpSM7Kk9L0oRq0KCBZhzJvZ3kbC39Rt/yDze5v9OuXbsgl/WpvFq3bo2XXnoJjRo1gjz9jVfkEsjTk2xB8+bNuYF65HalLe6cerJFN0TNTVBP9u9K/fibhpG6/qJhpI6loSa9YGkYGdAwYIEAH1IWoLGITwLRqic58+SXX37BokWLsHDhQixevDjoWS9yZk/Dhg1Rt25d1KpVC9WrV9fMIXn6mYyXJ4ZZOY7eZ+dEWIJVLcly8jm5bds2jBw5EnPmzAm65XImVpcuXXD11VdDmkjSwOMVWQSs6imyWsm7DRcB6ilcpGPjfagn+/ezfvxNw0hdf9EwUsfSUJNesDSMDGgYsECADykL0FjEJ4Fo0ZM8fn7VqlWaMTRv3jzNJJJGjtWrTp06uOaaa3DOOefg7LPPRs0aNVG5SmXum+MHaCi0JGeGTZ8+Hffee6+fdy446cILL0SnTp1wxRVXaBtoJyUlFVyIOQqVQCj0VKgN4psXKgHqqVDxR92bU0/271L9+JuGkbr+omGkjqWhJr1gaRgZ0DBggQAfUhagsYhPApGqJ7nvzpo1azSDaP78+fj666+Rk5Pjs52BJNx66614/vnntdlDsTxTKBBW3vKEQ0vSBJRL2X777Td8+umnmDBhgrdb8Rsn94W67bbb0KHDdWjTprU2M8xvASYWCoFw6KlQGsY3LRQC1FOhYI/aN6We7N+1+vE3DSN1/UXDSB1LQ016wdIwMqBhwAIBPqQsQGMRnwQiRU9yXxx5atnPP/8MaRDNnj0bclaRmSs+Ph5t27ZFy5YttVkmchlZmTJlzFTBvH4IFJaW5Kbb0ujbtGkT5J5JS5cuDXj5oTxFTs48kj9SGxUrVvTTQiaFk0Bh6SmcbeR7hY8A9RQ+1rHwTtST/XtZP/6mYaSuv2gYqWNpqEkvWBpGBjQMWCDAh5QFaCzik4Bd9SRnksjPyyVLluCHH37ArFmzsG/fPp/t8JYg97GRRsDll1+uGUQXXHABN0L2BkpRnF20JE+dk7r57rvv8Mknn5ja4LxNmza48cYb0a5dO20pImeaKRKHhWrsoicLt84iNiRAPdmwUyL4lqgn+3eefvxNw0hdf9EwUsfSUJNesDSMDGgYsECADykL0FjEJwE76Uke175s2TIsWLAAn3/+Of744w+f9+0tQW5KLfcdkvvUtGjRAvXq1aNB5A1UiOLspKW8JubNTPvxxx+1ZYty6aKMC+SS+1idXrrWQdMSzaNAqKnLY0c9qWsdawo3Aeop3MSj+/2oJ/v3r378TcNIXX/RMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCeBwtSTHLhLU0ieYvbNN9/gq6++CngwLxskB/DyBCw5G0QaRPIodbk/Da/CIVCYWgq0xYcPH9b09uWXX+Ljjz9GRkZGQEXPPfdc3HHHHbjuuus080guZeMVWgKRoKfQEmDtKglQTyppsi7qyf4a0I+/aRip6y/bGUbr16/XvmmWxyGvXLlSW56QmJionVojlxjcfvvt2lHGgSKQ9UycOFH7Y1EaN/JIZDnYuOuuu7TBRqD1mM2nFywNI7P0mN+dAB9S7kQYDoZAuPUk9x168cUXMWzYMEu3LU0hOYtI7kN0ySWXcMNiSxRDUyjcWgq2FdIskvsdSaNSmke7d+8OqMratWujW7duuP7661G/fn3NuAyoIDOZIhBpejLVOGYOOwHqKezIo/oNqSf7d69+/E3DSF1/2cow6tixo7apaUHN69evH0aMGIGEhASfWeW32AMGDMDIkSN95nnyySfxwgsvIBTfGuoFS8PIZxcwIUACfEgFCIrZAiIg9bRo0SItb/PmzUMyQ0duRJy3D9GHH34Y0H3lZapVqxbk86B16zZo1qwpypUrl5fE3zYjEMmfTfKEvdWrV2Pu3LmYNm0a1q1bFxDdunXr4t5779X2yqpRo0ZAZZgpMAKRrKfAWshc4SRAPYWTdvS/F/Vk/z7Wj79pGKnrL1sZRhdeeCH+97//accbyxlATZs2RaVKlbRjk1etWoXhw4drJ6LI5j/88MN44403fJIYPXo0+vfvr6XLDS2feOIJVKtWDdu3b9dMJLm3gbxkvscee0x7rfIfvWBpGKkkG5t18SEVm/0eqlZLM0eeDJWZmYlixYppsyxULOvasWOHtumw3Itozpw5kJtYB3JJ8/+GG27A1Vdfrc0iOuussziDIxBwNsgTLZ9NUqt//fWXtkxSzjxavnx5QHTlzOfu3bujQ4cOKF26dEBlmMk3gWjRk+8WMiWcBKincNKO/veinuzfx/rxNw0jdf1lK8NI/tEll5xdeeWVXmf9yH0I5Mam0jyS14oVK3DRRRd50JAGjRxwyG8P5ZG5cuCSlJSUn09OSZd7Enz//feQG6Zu3boVVatWzU9X8UIvWBpGKojGdh18SMV2/6tuvRwQy71Z8q4ZM2aga9euecGAf8tBttyP6Ntvv4WsQ55SFegljSpp1ssBd+PGjVGkSJFAizKfjQhE42eT1PXmzZu1ZWtTpkzBr7/+WiBxOVP5pptuwq233qr93aHCgC3wTaMwQzTqKQq7KWKaRD1FTFdFxI1ST/bvJv34m4aRuv6ylWEUSLPkRqlyxpC8hg4diiFDhmiv9f8MHjw4f68MOWNJ7jfgfq1ZswYNGjTQomX+5557zj1LUGG9YGkYBYWShQUBPqQog0AJrN71GxpWutBvdvkZKj9L8y5p2oz+8OUCy8n8eSaRNOInT56MtWvX5lUT8G9pMskNhXlFPoFY+GzKM48++uijgGYeSbPonnvu0QykZs2aIT4+PvI7OkwtiAU9hQkl30YQoJ4oA5UEqCeVNENTl378TcNIHeOIM4xOnjyZv9+G/IbcfW8MOZg5++yzsWXLFjRp0sTvN4MyXc5Skvn//PNPpUsg9IKlYaROsLFaEx9Ssdrz5tr9+rI38ciSZ/F+qxfRo/F9Xgtv2LABF1xwgTGtfSLQtjheaz4EfZo+bEwTIfm5unHjRm22pjSJfv/9d4883iKKFi2af8pUq1attOVv3vIxLnIJxNJnU55Z+tlnn2HcuHHYtm1bgR1XuXJl9OjRAzfeeCPq1Kmj9O+MAt88AjPEkp4isHsi7papp4jrMlvfMPVk6+7Rbk4//qZhpK6/Is4wOnr0aP4JOXKfowkTJhho7Ny5E1WqVNHinn76aW3fI0MGXUCmy5N75CX33pB/2Km69IKlYaSKauzWw4dU7PZ9oC2XM4saTbsyP7s0jbbP+lvbzDc/UryQ+xfJn/zrP7MoL1xxdhKK7iyiHXV/1VVXQZ4OJY353377LS+L39/yc1Sa+fJUM7kPnTzlklf0EojVzyZ5sMYvv/yCmTNnaubRsWPHCuxkuU+jnHnUuXNnpX9vFPjGEZQhVvUUQV0UUbdKPUVUd9n+Zqkn23cR9ONvGkbq+iviDKP58+dr+wNIBPKkNLmZtf7SL1mbOHEi7rzzTn2y4bVMv/vuu7W4n376Sdts1ZAhiIBesDSMggDJohoBPqQohEAIjF0xDvf/NCA/q/OndOTOSs8Pe7xwM4vw/VHgm0yPbAVF1KtXT9u7RW5aLZf6huLkyYLugemFQ4CfTYDcF1GeCDh16lTI/cGkmVTQJTd5l3+fyD0bud/RGVrU0xkWfBU8AeopeIas4QwB6ukMC7u+0o+/aRip66WIMozkH2Ht27fXNliVCNavX4/zzz/fQGP69Om45ZZbtLh58+ZBfkPu65IbtbZr105Llkfq3nzzzb6yesRLQfq79u3bB3n0rrzkySuqN9X2995Miz4C8iG1cuVKrWFyo3f9Ju7R11q2KBgC41dPQK8lg89U4csE0ptF8jCzmYeAX3LOlCvglfx8k4cUyM9kuR+Rw+EooAST7UZA+hrHjrlw7IQD6SdcSM8Qv4W/mH7ShRPpDvGD/J+MUw5kC3lkZwFZ2UCOKJslXp88lYtde48IkwQoUyoNCfFOcZgEIH6J3y7EOR1aWPwSe/lAfHYBRYu4kJwsfwNFxG/tR8QVSXYgRcSlpgJpxV0oXtyBpAiboHbo0CHMnTtXM4/k3xgFXXLZ5n333aftd9SwYcOYN1v5rCtIMUw3Q4B6MkOLeQsiQD0VRKjw06VJVL16de1GaBip64+IMozk8jM5nVteck+A999/34PE+PHjtT++ZMLixYtx6aWXeuTJi5DpLVu21IIffPBB/myjvHR/v80Mjj755BOUKlXKX3VMIwESIAFlBL7c/RVe+XfSmfrcTaM8syhdjPJ/OwF8eQoIYGKRNL6lyd68eXPtgWzmc/DMzfBVKAlkZTtw+HAiDh5OwiH5czQRR4/Haz8l9+1B/Z3L0ejoT6jlWINjuWlYgVZYntgYiUIAlbL/RcXcfxHnysZnRTviixKt4BSvq5/ajXNO7UCtrB3YE18Gs4s3Q7ZTOD9BXPXSN6HHkWlIcp0S73Ut5hW/BMJ19KgxDjkoFpeNtKQsFE8Wv1OyUSwlC6XSMrWfkmmnUFK8LiF+UotmaeaURyWFFCG/WFq0aBG+/vpr7TTWgm6jWrVq2gmucr+vsmXLFpSd6SRAAiRAAiRAAjoCcsuFLl26aDE0jHRggnwZMYaR3Jxa7oeRk5OjzdaR+2l4M2HeeustPPzw6U1b5f4CF198sU9E8qjcSy4Rf6SKS5Z76KGHfOZ1TzAzUKJh5E6PYRIggVAT8GkaSbOojpjGsVQYRUvFVBHhGfm75J5EcqmZNIlq1KjBmUT+YIUh7fiJOOzdXwR79xXBngNJOCBMoX1HkrD3qPg5mYQTuQn5d5GYcxIdjv2CK9N/QEvHN6gcvyc/LdAXOS4xQ8ghp6CduQ7mFMM4Zz98ndoK2xPK4kh8Kmqd2oVTjgTsTCyLXIfvU8EuOLkFzxx8Be0SZ5+pULzanlUZH8f3xFepLYSJlIWU3FMomnsSieL1huTq2JRcVeRyoGLmXgza/w4uxk9IcqQjHlmnfxzCLBLm0l5XVfye1AIbyzXCrrPPRbGKcShbOgPlymSgdKkMJCYY22K4iRAF5GbZW7du1ZatzZ49W8zqKni/I/n/Te4D1rixMPO4D1iIeobVkgAJkAAJRBMBGkah6c2IMIzkkbbyaFq5zEv+4bRkyRLIZTnernDNMOKSNG/0GRcqApwGGyqy0V2vYXmaXG0mZxMtE7OJtvh3ieTnrJzFedttt6FRo0Y0icIpk/37cWr+YmR/PR/Y+Q/+LtUUE2r3x4ZdCdgoVkIfEzOICrqkKfPQoY/QKW4yijrFurEwXlJZ+7JLY1duTexCNfwdVxMzircXZlK8MIpeFUbRFxCr1UxfB3NSsS+3Ms5N2Giq7N7skvg79zyI81XFHKokbCx6CZbU7YzyNVJRvYoLtWu5UKuGA1Urn14yZ6pyC5kzMzMh90ycMmWKtiF9QfsdlS9fHg888IC2ZL5WrVoW3jGyivBZF1n9Zfe7pZ7s3kORdX/Uk/37i0vSQtNHtjeM5Klncnr2li1btLX933//PS677DKfNMK1h5HPG/gvQb/pFje9LogW0wsiIB9S0iiVl/zmmXsYFUSM6XkERs99Gf3ffBpYINacncyL9f37qaeewoABA8T+McV9Z2KKeQJilgl+Ww189gmw+S+gbDlklq+O3aXr4Z9DqXD8uhKV//wa1V3rPOpeldkE11aYjIy4FI+0vIi43Czccng+7j45Hhcl/poXzd9eCBzPTcTXObfgmKO4mGDnFDOipAnnRErRZGTUPh+Oixugcr1SOKumAzWrO5BwZtKWl9qsR+0X5qCccSSX18sZ0QVdHTp0EEvue4hloVeJPaDE5k9RePFZF4WdWohNop4KEX4UvjX1ZP9O1Y+/uSRNXX/Z2jCSM4quuOIK/P7779o33J9//gU6drzeb+t5SppfPEyMUAJ8SEVoxxXSbcslMMuXL8fYsWMh92craBaD/jb79euHMWPG6KP4OhgChw/BNWsWciaMQ/y+rcHUhH+yK+GP3IZYldAYvxRpgJOOJDTK2IBLT/2MZnHfomScmEFWwJUeXwqH6l2DjItboVjWAaRtWIqEbWvhSCsBR6Uqwlg0LhXLry5BGBTZwnR0+Z+dlp8/kBeJos6yYmrPzs2B5A5rHsl6dW4L/JrcFGvOuRrn1UtFgwscqHO+A+ee7UARsapT1SX/v27YsEGbcfTuu+9qs6n91S2X4/fu3VvbdL527dr+skZcGp91Eddltr5h6snW3RNxN0c92b/LaBiFpo9saxgdPnxY2zcj71s3eVStXB5R0CVnJFWpIv7oFdfTTz+N4cOH+ywi01988UUtfceOHZB7dai69ILlDCNVVGO3Hj6kYrfvzbRcfu68/PLLmDlzZsGb7MpZE1metZcoUQLyWxnum+LJJtCY/ftd2DlrBYrOmIga/8xCvNseQIHWoyxfo5bAFeLE0JatgFpned1cOv+95EyoBWI53I5/gIqVIB6o4qcqUKzY6XLrxQyose8CPy8QR6gdzi9m6oU0n3r0Be68SxyVJo5EE3sS4uPJwLefi+PXhCgdYtFavNhrK0m4MjnZYmac+54/YkZQB3Ea6hVXivJFtT2TjmfE4/CBbLiWr0KRFT+g9J5lYk8jNebWpqyzcFm5WTgeLxiIS85HOlecY9HkXAcurANcWNeJC85zaCe/aRmC+EcuWVuwYIFm9Mr/xwVdchP6+++/XzutsIhKF6ugNw5ROp91IQIbo9VSTzHa8SFqNvUUIrAKq9WPvznDSB1YWxpGx48fx/XXX69tECmbKqdry/00ArnkN3Vnn322toStSZMmkBtb+7rkhtjyW3iZ/88//1S6T4desDSMfPUA4wMlwIdUoKRiM58cYMrZmAFd54vBeAsxED+nCFodqY+1b/8GuUmg/vrxxx/RunVrfRRf6wnIM+S3bQNWLEfusiXIWfQjXBknsKTCffj+aAPcKvbqqZO4Vl/C1Gu5ZCrVKWbzBHOlpAHd7gduuhmoUDGYmnyXzc7GqX934Xehv8ziabhInEqaJI6Vh4jDrp3An2K/oVlTxAl8GafriBcnq2lG0d2nDSj3miVXaVjFxZ1JkeFdor61vwvjSKyplEuxLryw4DZlCeNJml5is2ns3IHMoxnIWrwMKWu+1QyfM28Q2Cu5F9J78Y8jQ8zqSs1NFxtyn0BR1+kZXZlis+8cRyKc5Soio+3lOL9pSTSs70D5cg7xd0Vg9XvLJb/ImjZtGl5//XX8849oi59Lnqr25JNPolu3bihXrpyfnPZO4rPO3v0TaXdHPUVaj9n7fqkne/ePvDv9+JuGkbr+sp1hlJGRga5du2LOnDlaK+XSCLlEwsw1ePBgDBs2TCvyv//9D/Xr1/covmbNGjRo0ECLl/mfe+45jzzBROgFS8MoGJIsKwnwIUUdeCOwbNky7UAAb2mGOHloVSUxct0uBt/ylLS2xfOTnz+/H+Y8O9uwhwqXpeXjMb44cADZL46A67svkJBd8PIvY+HToW1Z1THbeQuSXSdxQe7vaBz/E5KdOdjjrIl/z+uAnCsuR6krG4rTQOMQ/4GYyfPFDGF8bDptpHir0D3uwkvFzJ17gcsuR8g239G9Z4GfTUePAvPmii2ChFF55VUQm2PpShfCS2n0ffkFsHu3OCFQGFTi5NWsU7lispT4veNfpO3+FYkQs5osXlniVLmFWe3xcdFbsbJCc7Son4BLGgJNGztR+yyHhsFs1VnC/JIm7oQJEzQDSX4x5uuKE2abPCm2Z8+eOP/8831ls218gXqy7Z3zxuxIgHqyY69E7j1RT/bvO/34m4aRuv6ylWEk/yjq3r279geRbKI0caSZY/aSBo08TUTu29G2bVvNfNJvEiz/w8vNI+UG2vKPK7mhdrVq1cy+jd/8esHSMPKLiokBEOBDKgBIMZTlqBiEDx06FK+88or/VpcXJtFlyehzdU98PvhTbZaCnK15/h118OiK06a6rOCNps/ifxNWY9y4ccKoqKqd4NSiRQv/dcdIqpyosmZtLlYuOITO49qijHOv6ZZnChNhblYXTC95OzLrN0Tjeg7UE3vhSAOhRuVcJAjDSKwB9F2vWKYkHlTAxj+A1SuBJQvF12hiBk+WmLmTVga49AqgWXPg4qanl5D5rkl5StR9NgkDCZuEQbfge+DNF4LidTQnGetymmCtsyFWJ9fD4tIt0LxRUbRu6kDTJqLvq5mfgbRLzLaaMWOGNutoq5w95ee64YYb0KdPH+3gEKc07CLgijo9RQDzaL5F6imaezf8baOews/c7Dvqx980jMzS853fVoaRXIcvN2mVV5cuXfL3F/J1+wni6JLq1at7TR49ejT69++vpbVp00abqi1Noe3bt2PEiBHat3UyUeZ77LHHvNYRTKResDSMgiHJspIAH1LUgSSQnp6OSZMmYdCgQR7LyDwIPSj2Wzk7Ce+3ehE9Gt8HuS/cDz/8gE6dOkHukzLgs4F45d9J+cXea/kiyu4orZ1CKfcxitVLTjr5a7MLP/+SiwVLXZi/LgeNj63Fs0efR6PE5aaw7HVVwtqLHkZO5444p3GaOLrd2gwTn28qzQ398i2fGUOXENWfTZs3A0/0Bf5YpQTgwZxiuD9lIuYXb6zVV06srmt/kQMtL3Gg2cUOVKogDN4ArxzR9z/99BPGjx8Pucejv6thw4a49957cffddyMlJcVf1kJPi2o9FTrd2LsB6in2+jyULaaeQklXTd368TcNIzVMZS22MowcJhf7y+nW69ev90pDzi6Sx0OPGjXKa7qMfOKJJzRTKhTfvOkFS8PIZxcwIUACfEgFCCpKs8nZl3JWgTzuvqC9THCL2J+oSVGNRJ5Z5I4lT09f7v7KYBr5yu9ePtrCh48Ai5fmYvF3R7D75804kZmF6lm70DZjPprHzUPxODGTx8R1qkp9JDzaF04xw7WwDR0Tt20pa56WZOHmzZtDP5vXUoV2KySXfy35+fSm3H+LWV5yk+5UYcbK3yni/5mYuZOdfgondhxB0T/mIz6AjbY3ZJ6Pu0q9hz+LGL/wqiMmi13X0oHLxc+F9ZwBryjcJpbZydmBcsN7uay/oEuePFu3bt2CshVKetTrqVCoxu6bUk+x2/ehaDn1FAqqauvUj79pGKljG7WGUR6iRYsWYeLEidqMIjnQksst5Iwj+U1bKJdc6AVLwyivN/jbKgE+pKySi+xycq8SuaG1nC25evVqv415d8Z7eOCfgfl5/Jk/ej1tKLIRvZYMzi+36pbv0LCS2FQ4ii/pAWzeKtguzMX+mT+j4V8zUM+5DFXi/w2o1XuyS2HIBbNQrVV1tKy2BxdmrUKxMmJD5woVTm/GXEaM/GPk0mspKg0jM/14XJzmNncuXFMnw1HArKQTuQm4P3kyvk4TSwm9XEXigOsbOnBVKzEDqbkDZcsUPPtIziKcOnUqRo4cKfZk3+alVmOUPPSjcePTs52MKYUXop4Kj300vjP1FI29Wnhtop4Kj32g76wff9MwCpRawflsZRgVfLuRk0MvWBpGkdNvdr1TPqTs2jOhu69169bh6aefxuzZs32+Sa9evbSZknl7sL2+7E08suTZ/GVovgq662ny7x/i/p8G4LXmQ9Cn6cO+ikV0vNwG6NeVufjuJxe++CkXTXb8iEfTR+GCRHFMvIkr25mEnEmzkdTInjM0TDRFSVZ3LUXdDCOrlOSm2uuFtuTpbj98J06M+82jJrH6Ea/kDsSq5Lo45kzBsbgUbEiqilNxYpag29VIeJGdLnegfVsnzqrpf+8jueT0m2/mYsyYl7Vla25VGYLnnXceVq1ahSJFPN/TkDFMAeopTKBj5G2opxjp6DA1k3oKE+gg3kY//qZhFARIt6I0jNyAqArqBUvDSBXV2K2HD6nY6ft///1XWyr7xhtv+Gy0PDp74MCBOPfccz3yrN71W4EzhLzpKZByHm9m8whxvgEWL8vFl9+6MGOZCyezXbj90Dz0zRiFsxPExsZmrurnidPl2gN3dIc4t9xMyajO601LUd1gK42TO6f36gn8PK/A0jlig/S1WQ0xM+lWfFDyWpyMO728VF/wbLHF2M1tHbj6cifqiM3Tfa3mlzMUf/31VzRt2lRf3OvrKVOmaCfUxsfLIxUL76KeCo99NL4z9RSNvVp4baKeCo99oO+sH3/TMAqUWsH5aBgVzMhSDr1gaRhZQshCOgJ8SOlgROnL48eP4+2339ZOhpQzBLxd7dq108wkuYltMFc06+mk2MJF7kc0W5hEM39xQZyYrl0lsw5j2t4HcXHiksDQxYslZq3aAZeLfYgubUmTyAe1aNaSjyZbi5b/p8eIPRU/fDvg8idz4/B99g3IcBRBcdcRpOIoEpAJB1zaj/z376QG2HJbX7S9JhUX1ve9qfqrr76Kfv36+X3vBg0a4IUXXsDVV18ttmYqnFPVqCe/XcREkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgAtQopkZ2dj+vTp2tIyeWS2t6tOnTraiY7SMDJ7OIC3+qJNT3Im0Y+LczFrngufrThjEuW1/aITG/DR0TtQIX5/XpTh98nUKkh4uA/iLxJ7Nx04ABQvDtQRS84KebaF4SZtGog2LYUcs9xA6y0xe/CdEcreaklma1xbeRLKJTvQ7UoHbrjGiQvO8z7zSJ6odscdd/h9b7nP4/Dhw9GsWTMlnzd+38wtkXpyA8JgUASop6DwsbAbAerJDYgNg/rxNw0jdR1Ew0gdS0NNesHSMDKgYcACAT6kLECLgCJyucjDDz8Mufmst6tUqVKaUXT77bcjMTHRWxZLcdGgJ3EQJlb+lotPvnThQ7Ev0Ulxwry3664Dc/BSTm8kOf6baqTL5KpyNhx9nwSuEjOJCvl4et1tRdTLaNBSoQBf9BMwYRywTSyNPHkcyDgBZArnU8wesnI95XgF75XpnF/03JJi9eQ1DnRs70TVKp4bZq9Zs0b77JEHg/i6unbtimHDhuGcc87xlUV5PPWkHGlMV0g9xXT3K2889aQcqfIK9eNvGkbq8NIwUsfSUJNesDSMDGgYsECADykL0Gxc5ICYxfLss8/C1z5FccK8GDJEbEDdpw/S0tKUtySS9bRlmwuff5WLiV+7sEOMsd2vKqd249Yj32onlzVwLkHl+D3uWYA0cYrZ8y8Dl12uHYvumYExgRKIZC0F2saw5csQ6ylXCPN42sdiytwc4R2ZM49WZTbB50ldMS2tLfYnlM6/7WZVgds6OHHNVQ6UKmk0j1asWKEtg50rTnfzdskZjY8//rh2UmPZsmW9ZVEaRz0pxRnzlVFPMS8BpQCoJ6U4Q1KZfvxNw0gdYhpG6lgaatILloaRAQ0DFgjwIWUBmg2L5IppMfLYazmrSB6B7e3q0aMHBg0ahLyTz7zlCTYu0vR0SKD6cm4OPpztwgrvq/bQ8MRGjD48EI0Svc/WymdWv5lYEvQ+IGZv8QqeQKRpKfgWh6mG/WL55NfCNNr0F8QRZkCxYuJHLJWUMw2FieMS6Q4/y9oWZF6N+8u9iAMJZ3QudyXq1NCB7jc60KKZM39Sndwc+4cffsCAAQO0TbK9tTAlJQUjRozAvffeG9IT1agnb/QZZ5UA9WSVHMt5I0A9eaNirzj9+JuGkbq+oWGkjqWhJr1gaRgZ0DBggQAfUhag2azIunXrtBlDCxYs8Hpnbdu21QZkjRo18pquMjIS9CSXnK1YnYsPP3FhqjjhLCdvsoUY3HY4+jPuOT4ZtRzrsRhX4X9J9fFc9qNIdvpYl5YH7zZxUtWTT3NvojweCn5HgpYUNNOeVTwtllPO+sjnvW3KOhtXlPsMR+M9ZymWFx5Uz+sc6NrRiSqVT886kob2rFmztP3UNm3yfopgrVq1MGbMGFx33XUh2RibevLZnUywQIB6sgCNRXwSoJ58orFNgn78TcNIXbfQMFLH0lCTXrA0jAxoGLBAgA8pC9BsUuTo0aMYNWqUtoms/Cbf/SpTpgzefPNN7UjrcJ1MZGc9HTokNq6ek4t3P3Vhk24SlsOVi/sOzkafzJdQJf5fd4z+w844YLjYaPj6jv7zMdU0ATtryXRjIq1AjjBI3xa6nvAWcCrd692vy6yLKyvMwMm4ol7TZeSVYouiu7o40baNU5vAlCGWxn3wwQeacXTihJd1n6KM3Bh75MiRaNKkic96rSRQT1aosYwvAtSTLzKMt0KAerJCLbxl9ONvGkbq2NMwUsfSUJNesDSMDGgYsECADykL0Aq5iDSHvvzyS2352T///OP1bvr27avtHyI3tw7nZTc9ydlEv67MxeSZLsz4VcwmcoPR7sgyPHdiMM5J+NMtxUcwWQyO214P1KgJlCghXl8FhGH/FR93E9XRdtNSVMP21bisLGDpEjHb6DNg7iceuQ47yuJQZioSHSexPbc2Fse3wYKiTXEwrhjixf+2RFe29lM6LhtNr6mEG+4pr22UvV8sexs9erRmeMvZR96uu+++G0OeGYLqNap7SzYdRz2ZRsYCfghQT37gMMk0AerJNLKwF9CPv2kYqcNPw0gdS0NNesHSMDKgYcACAT6kLEArxCL//vsvpBk0Y8YMr3dx8cUX46233kLjxo29poc60i56kpMXPheziV6bmmuYTZTX/gtObsGIg8+hReIPeVEF/77pXuDpwUBCQsF5mSNoAnbRUtANiZYKduwAbuoAHNlnqUXSFhrjGozf2/bA/bc50OxiJzZv/ksztqdPn+61TrlJ//PPP49HHnkEcq+jYC7qKRh6LOtOgHpyJ8JwMASop2DohaesfvxNw0gdcxpG6lgaatILloaRAQ0DFgjwIWUBWiEUkbOKpEkkN64+duyYxx0kJyfj9ddfx1133SX8jMIzNApbT//scOGLsbuAT2ajeuZGfJ1yNaaXbJvPKzHnJF7dMwI3J0yA3Kg3oEtsBIxnxMlnN90cUHZmUkOgsLWkphVRVsv27UCX9sAJ3ZpOk018M6c/BlfohdolHOh9qxOdrnXgf7/9jMcee8znxthyfyN58mP79u3FvtzG09gCfXvqKVBSzBcIAeopEErMEygB6ilQUoWXTz/+pmGkrh9oGKljaahJL1gaRgY0DFggwIeUBWhhLrJr1y7tG/ZPPvFcEiJv5Z577sGwYcNQsWLFMN+Z59sVhp7k9k2/rMjF8lGL0WT1W7g4cbHBDLo74UN8UaIV6qRvxoeH70XNhK2eNy5jqp8njKFhwCVNgYULgVHidao4QeopMauoYeg3DPd+U7EbWxhail3aJlq+eTNwy3VA+hEThYxZx2c/jCfL90WOMwFFhHPbo504Ya2rOKlw+aeacbRz505jgf9CXbt21YzxChUqeE33F0k9+aPDNLMEqCezxJjfHwHqyR8de6Tpx980jNT1CQ0jdSwNNekFS8PIgIYBCwT4kLIALUxF5KwiaRLJ46a9zSqqXbs23n//fW2T2DDdUoFvE049ZWYCs7/JxUfjD6DnhqFon/iFz/ublfQQrj31nravikem1JLAgOfExtWdII5n8khmROEQCKeWCqeFEfyuhw8BixYBOdlAitjXS7q2y38BfvwO+FdnyIrZQLnCvnW63HcPA7Zk1UT/1JexoPhF+SBubOTAfbekY9HCdzFw4EBkyT2U3K4SYu+wyZMno0OHDqZmG1FPbiAZDIoA9RQUPhZ2I0A9uQGxYVA//qZhpK6DaBipY2moSS9YGkYGNAxYIMCHlAVoYShy8OBBPProo5g0aZLXd3vyyScxaNAgpKamek0vrMhw6EnuTzTtsxyMnXQUN+2cgntdryAt7qT5JjvjgQf7A3eLvYmKiLPAedmKQDi0ZKsGR8vNSJNHLhsT+w9pv2W7PhWzI595xGsLx2b3wRMVHxVpZ5aataoJ3HbtDrHX9kBMnTrFa7mePXtixIgRSEtL85ruHkk9uRNhOBgC1FMw9FjWnQD15E7EfmH9+JuGkbr+oWGkjqWhJr1gaRgZ0DBggQAfUhaghbjIggUL0L17d3hblnHuuedqx1I3b948xHdhrfpQ6ungIRcmThEziqYfwsN73sctzveR4vScgRDQnZ9VVxwbPg6oUjWg7MwUfgKh1FL4W8N3xBefAwN7CxBiNpLbtSKzKXahGlYkNsbYUtchI+70BtfnlXShXaOFmPLhw/jrr41upYCaNWviww8/xKWXXuqR5h5BPbkTYTgYAtRTMPRY1p0A9eROxH5h/fibhpG6/qFhpI6loSa9YGkYGdAwYIEAH1IWoIWoSHp6OoYOHaodNe3tLeSsosGDB6NoUbEExKZXKPS0c5cL70/OxdvzXLj+0I8YldELpeKOeyWQ6RQzhQaOQGI5ceR97+5e8+DW+4EnBgCJid7TGWsLAqHQki0aFss3sX6dWP75OLBpjU8Kx3MT8WnuPXitZDdsTa6i5SsTfxzV457F/G9f9VpOfi4OGDBATBT0PVOQevKKjpEWCVBPFsGxmFcC1JNXLLaK1I+/aRip6xoaRupYGmrSC5aGkQENAxYI8CFlAVoIiqxevVqbVbR27VqP2qtWrap9i966dWuPNLtFqNTTtr9deG1sLiYvdiExJx1v7BmOLgkf+Wyyq+0NcAwRexGVKnU6z2Kxx8rE8cDvK06Hz75A7K77INDmMp91MME+BFRqyT6t4p0gNxf4QMzue+VZvzBELizOvAI/J7TCiuR6WJhaH46jPyL9r7uRnr7Ho2zDhg21Jbz16tXzSJMR1JNXLIy0SIB6sgiOxbwSoJ68YrFVpH78TcNIXdfQMFLH0lCTXrA0jAxoGLBAgA8pC9AUFpGbur722mt44oknxL6xnks15IbXo0aNQsmSYmPmCLhU6Gn7DhdefS8Xkxa5xIa5wJVHf8UrJ3qjcvxuDwIuse+J4+obgfsfAsRyPV7RQ0CFlqKHRpS1RH7W3ShOWtu4OuCG7c4ug15F38f3ydWR8edjyDzgubeRU2xa/8orr+Chhx5CfLzYo0x3UU86GHwZNAHqKWiErEBHgHrSwbDpS/34m4aRuk6iYaSOpaEmvWBpGBnQMGCBAB9SFqApKrJp0ybtBLSffvrJo0a5kevEiRPRsWNHUycBeVQU5ohg9LRjp5hR9H4uPlh42igqmn0cr+590fesojYdxPKWwWIfotPLVsLcVL5diAkEo6UQ3xqrV0Hgjz+Am9sD2eK4wwCvHJcDozAEI8rehfTdM5H5Vw+xJVK6R+m2bdti3NhxqF6jen4a9ZSPgi8UEKCeFEBkFfkEqKd8FLZ9oR9/0zBS1000jNSxNNSkFywNIwMaBiwQ4HykPnUAAEAASURBVEPKArQgi8iZRFOmTME999yDTHk2vNt13XXX4Z133kHlypXdUuwfNK0n0f7DEz/Hvg++EjMG9uAEiuMY0nBc/G7unIey8Yc9Gx0v9h567hXg+o5nTmHyzMWYCCdgWksR3t6YvP09YmnZmv8B54vlotL43bkTYodr8TMWyMzwieT7zGvQvfwoHM86iONrHxCe0XceeVNSUrTPWWm6y4t68kDEiCAIUE9BwGNRDwLUkwcS20Xox980jNR1Dw0jdSwNNekFS8PIgIYBCwT4kLIALYgiR48eRb9+/bSTztyrkUsopFEkjSS5tCISLzN6OrRsI7J79kDZ7M2BN7VeU+Dl1yHctMDLMGdEEjCjpYhsIG/aN4GTJ4HvhQm0cjmwVMzA3LHJI++hnKKYl9sVqxLrY+6Rjfh9h9wTSS5iNV59+/bF8OHDERcXhyVLlmiJ8pTJpKQkY0aGSMAEAX4+mYDFrAUSoJ4KRFToGfTjbxpG6rqDhpE6loaa9IKlYWRAw4AFAnxIWYBmsYjc2PrWW2/Fxo2ex0PLAcyECRNwzjnnWKzdHsUC0dOJ47lY3WsiLl7+DBIdnvs2eW2JnFU08EWgy00QbprXLIyMLgKBaCm6WszWeCUgN8ke+x7w+jCvyXmRM062R4+dK3E087e8qPzfjRs31kz6/fv3a3E0jPLR8IVFAvx8sgiOxbwSoJ68YrFVpH78TcNIXdfQMFLH0lCTXrA0jAxoGLBAgA8pC9BMFskVA553330XvXv3FgcEeX4DPmzYMPTv31+c8i5MkQi//OlJ7O+NmZ9modqQnmgRPy/wljZrCwwbAVSoEHgZ5ox4Av60FPGNYwPME1gqZgc9fBeQccJn2Z3Z5fHgofr4ct8kjzzy81V+zl5++eW49NJLOcPIgxAjzBDg55MZWsxbEAHqqSBChZ+uH3/TMFLXHzSM1LE01KQXLA0jAxoGLBDgQ8oCNBNF5DfaDz74ID755BOPUpUqVcL06dPRokULj7RIjfCmJ3kg0qJPdqLM4IdwQdx/R9y7NfDPrHOx45I7cUlLJ4q6jgNi6Z52XSrYNGvOvYrceMVC0JuWYqHdbKMfArv/Bfr1FvseLfWZSVryo090xlPbJ4uTJ//7HNHlvvbaazFp0iSULl1aF8uXJGCOAD+fzPFibv8EqCf/fOyQqh9/0zBS1yM0jNSxNNSkFywNIwMaBiwQ4EPKArQAi/z888+4+eabxT6uYiNXt6tz587arKOyZcu6pUR20F1P6/5IxLMjMzBq+TU4J+FPj8bJwd2SGo/g3HH9ULZigkc6I2KXgLuWuOdM7GrB0HLpQG8WexotXCiMo9XAD18BOWL6otu18lQ9DN29H3NOrHRLAerWrYsZM2bg/PPP90hjBAkEQoCfT4FQYp5ACVBPgZIqvHz68TcNI3X9QMNIHUtDTXrB0jAyoGHAAgE+pCxAK6BIdnY2Xn75ZTz11FMeOeVm1m+88QYeeOCBiN3Y2qNRuog8PR04lIjf5ldF6g/z8EDuSJSI8zz6Whbb+8RYlLvzGl0NfEkCpwnkaUmGuOcMVeGTgDTkH+sD/L7Ma5afT5TB0J1r8X22cTmwXKImZ3h26tTJazlGkoA/Avx88keHaWYJUE9miYU/v378TcNIHX8aRupYGmrSC5aGkQENAxYI8CFlAZqfIvL/pzzl7KuvxLfeblft2rUxbdo0NGrUyC0leoJHj2Tg857TUWflLDRK/AW+tqfOhQPOPgOBng9GT+PZEqUE+NmkFGd0VxbAxthzDmegx78Hsdttn/0BA57G0KFDomIPuejuZHu1jp9P9uqPSL8b6sn+Pagff9MwUtdfNIzUsTTUpBcsDSMDGgYsEOBDygI0H0V++eUX3HjjjV6XoEkTacyYMUhLS/NROrKj5SqRBT/mYO8jL+PWnNf8Nsb1+mQ4mjUDUlL85mNibBPgZ1Ns97+l1i//FejbEzi812vxg9kuDNm5H2+eMC5ha37pVfjs08koX76813KMJAF3Avx8cifCcDAEqKdg6IWnrH78TcNIHXMaRupYGmrSC5aGkQENAxYI8CFlAZpbEXny2XvvvYeHH37Y4xS0hIQE7Tjn22+/HQ6Hw61kdAQ3b3Hh6RE5uHTh2+gTJ04z83G50srC8dr7QJOLfeRgNAmcIcDPpjMs+MoEgcxM4NOZwKsvAscPeS247HgGeu04hFW5Z6YbJSZXxLxvPkebNpd4LcNIEtAT4OeTngZfB0uAegqWYOjL68ffNIzU8aZhpI6loSa9YGkYGdAwYIEAH1IWoOmKHBWnefXq1QsfffSRLvb0yzp16mDmzJlRu7HqyZNiTPZeDkZ/4cJTe8ahv/N5DwYZSILzmpuReFNn4KKLIDZu8sjDCBLwRoCfTd6oMC5gAhkZwPSp4kNqOJApPqzcrkwxLXLsviN4dH86hMX03+XEY/3HY+RLd4qPqug0+PNayt/BEeDnU3D8WNpIgHoy8rBjSD/+pmGkrodoGKljaahJL1gaRgY0DFggwIeUBWj/FVm/fj26dOmCDRs2eFRy55134vXXX0fx4sU90qIhYuHiXDz8Yi72HT2Jgfs+QO+4kR7N2nXnMFTqezvE5iAeaYwggYII8LOpIEJMD4jA/v3A4AHAT197zb4zMxtP7jiAjzNy8tPPqf8k5s56DjVr8LMrHwpfGAjw88mAg4EgCVBPQQIMQ3H9+JuGkTrgNIzUsTTUpBcsDSMDGgYsEOBDyjw0l/hmWh7J3K1bN2RlGffCkKegvf322+jRo0dUnoK2d58Lg0fkYvGS3XjqwFjc4JyEVOeZ7+fzaG7seh9qiM1keRR6HhH+NkuAn01miTG/TwLiMzvz23lwDeiDpFMnvGb7/mg6xuw5igyxSq1yvBMbEi7DbS9MR++eJSFWFvMiAQMBfj4ZcDAQJAHqKUiAYSiuH3/TMFIHnIaROpaGmvSCpWFkQMOABQJ8SJmDdlKswxowYABee81zY+eqVavi008/RZMmTcxVGgG55SFEU2bm4gmxBO2OfbMwJPtxFHUazbK8Zmy64U78c8WVPAo9Dwh/WyLAzyZL2FjIBwGpp2ULFqDm7M9RddHXEH+k+sh5OjpHpD+xMxELms7Hey/UxMUXcTmtX2AxlsjPpxjr8BA3l3oKMWAF1evH3zSMFAD9rwoaRupYGmrSC5aGkQENAxYI8CEVOLS/t/2NW2+7FUuXLvUodN1112H8+PEoW7asR1qkR2z804VHnsvB5q0HMHbvk2iT+J3PJmX3G4JFZ9XW0ps3b84ZRj5JMaEgAvxsKogQ080Q0Ovp0grlkfjcM8Aaz89yfZ2nhGnU4s8TWF/3K/Tt0gwD+sUhtag+B1/HKgG9nvisi1UVqGs39aSOZahq0o+/aRipo0zDSB1LQ016wdIwMqBhwAIBPqQCgzZv3jx07doVx44d8yjwwgsvoH///oiPj/dIi+QIudrurXE5eH56Lrod+BpDsx5Hibh0jybJ7+kdLdsD9z+IU3XqYsmSJVoe/hHtgYoRJgjws8kELGYtkICHnuTeanO+BJ59Ajjp+bmeV+G6k5losPUg4mpPQu2zb8E7g51o2YyzjfL4xOpvDz0lJcUqCrZbAQHqSQHEEFehH3/TMFIHm4aROpaGmvSCpWFkQMOABQJ8SPmHlpOTgxEjRmDgwIEeGdPS0vDJJ5+gbdu2HmmRHrFhows9B2Wj3OaVeP7YYJyfuN57kzreAfTuC1SsqKVTT94xMdY8AWrJPDOW8E3Ap57ESZeYMB74aCyQfsRrBa/uOYx+B9IRX2kQUs8ehHvbxOOZx+LEoQZeszMyBgj41FMMtJ1NVE+AelLPVHWN+vE3DSN1dGkYqWNpqEkvWBpGBjQMWCDAh5RvaHI2Uc+ePTF1qjia2e269NJLMWXKFFSrVs0tJbKDclbRtJGbUXTSe7jUMRfl4w94b1BKGjD6baB1G0M69WTAwUAQBKilIOCxqAeBAvUk9zQ6chhISERux3Zw/rs1v45cuDBp/1H03nsCJ9O6oljd91GuaCreedqJK1pztlE+qBh6UaCeYogFmxo8AeopeIahrkE//qZhpI42DSN1LA016QVLw8iAhgELBPiQ8g5N/t/q3LkzVq1a5ZHh0UcfxfDhw5GcnOyRFskRf4i9ioY+/i/e/bO116Vn+W27/Hrg+ReAEiXzo/JeUE95JPg7WALUUrAEWV5PwJSe1q+D66Z2Hhtj78rMxiPbD+BTNERqw88Ql1wRtzd1YNiAOJQQHjqv2CFgSk+xg4UttUiAerIILozF9ONvGkbqwNMwUsfSUJNesDSMDGgYsECADylPaL/++iuuvfZa7N+/35CYIM5W/vjjj9GlSxc4HA5DWiQH5Kyit8fn4Llpufhm5224OPH0HkQebapUCxj0PNCqtdi0yHv7qScPaoywSIBasgiOxbwSMK2nd94C3hTGuNslZxu9vPswnjhcVphGXyM+9VyUE98djB/iRAvubeRGK3qDpvUUvSjYMgUEqCcFEENchX78TcNIHWwaRupYGmrSC5aGkQENAxYI8CFlhPbNN9/g+uuvR3Z2tiGhatWq+PLLL9GgQQNDfEQHxBKMXQv/xNeDfkHCvr9RO3c9mif+5NEkV8nycDzyFND5RiAuziNdH0E96WnwdTAEqKVg6LGsOwHTepJL1CZ+AIx5FsjNca8O68Vm2KP3pGP62d8gsWRzLf2Raxx4qk+cmH3qkZ0RUUbAtJ6irP1sjloC1JNanqGoTT/+pmGkjjANI3UsDTXpBUvDyICGAQsE+JA6A23SpEm46667zkT896p169aYNm0aKlSo4JEWqRGuLVtw5I4HUOLIOp9NyHXEwTl1DlC3ns8ZRe6FqSd3IgxbJUAtWSXHct4IWNbT9u3AgMeB3372Vi0+O3QC3Yu/j4QKnbX080sBH7wUh/PO8T4L02sljIw4Apb1FHEt5Q2HgwD1FA7Kwb2HfvxNwyg4lvrSNIz0NBS+1guWhpFCsDFaFR9S4svj3FyMGjUKTz0lZtG4Xffffz9effVVFClSxC0lcoPpn4hlFEMeQCI8vzXPa5X4bh2OD2cDjS7KiwroN/UUECZmCoAAtRQAJGYJmEBQehLPCHwwHq5XhsKbDbTyRAY6uZ7C8ZrixEiRQ87DfOEuB+7rLkx37okdcB9FUsag9BRJDeW9hoUA9RQWzEG9iX78TcMoKJSGwjSMDDjUBfSCpWGkjmus1hTrDym59Kx///6aKeSugSFDhuCZZ54Rf/BHyV/8YrOiPb2Hofyice5N9Qw/Mhi4/wHP+AJiYl1PBeBhsgkC1JIJWMxaIAElevplGXKf7Avnvn883u/vzCxcdfRm7D1vtPCMTi/dbV1L7A/3QhwqVfBmM3lUwYgIIqBETxHUXt5qaAlQT6Hlq6J2/fibhpEKoqfroGGkjqWhJr1gaRgZ0DBggUAsP6TS09Nx3333YerUqR7k3nvvPfTo0SNqNrfO/Gc3DnS+FxXTf/No66GcothVsT3OvaYa4quIZXf16p9ehuaRs+CIWNZTwXSYwwwBaskMLeYtiIAyPYnZRrmzZyFnYG8kiA2w9ddOcYra1fta4J/6k+Bwnt7IKFV4RxOfceKK1lHyxYO+wTH8WpmeYpghm36GAPV0hoVdX+nH3zSM1PUSDSN1LA016QVLw8iAhgELBGL1IXXw4EHcfPPN+P777w3U5GyiTz/9FJ06dTLER3Jg3+yfkfTkXSjuTPdoxuzc7ij5zhC0bKNml9ZY1ZMHWEYETYBaChohK9ARUK6njRuRftM1SMnO0L0LsCcrB9fuPA+bGn4OR3yx/LR+1zowoG8cxGGbvKKAgHI9RQETNsE6AerJOrtwldSPv2kYqaNOw0gdS0NNesHSMDKgYcACgVh8SMn/Q+3bt8eqVasMxFJSUjB37ly0bNnSEB+xAfFN+NZH30T170bA/bvtUy4nptR6HddP7oTSpdQtl4hFPUWsPmx+49SSzTsowm4vJHravw/Hr2uL1KP7DTSO5uTi8V2lML3uAjgTS+enNakstkIaGYcqldV95uZXzhdhJRASPYW1BXwzOxGgnuzUG97vRT/+pmHknZGVWBpGVqgFUEYvWBpGAQBjFr8EYu0htXPnTrRr1w7r1hlPB5MnoH377beoV0+cCBYFV9bOvdjZtS9qHFno0Zp/sqtgzUOTcU2fc8WSO4/koCJiTU9BwWJhvwSoJb94mGiSQMj0dPgQ0ju1R4qXfY2Wn8jGt4n98UWpztiUXE2746JiidoHA5246nJ3G99kg5i9UAmETE+F2iq+eWERoJ4Ki3zg76sff9MwCpxbQTlpGBVEyGK6XrA0jCxCZLF8ArH0kNq2bRuuvPJKbNq0Kb/98kWdOnXw1VdfoXr16ob4iAuITa3x00JkfDQTyb/O8Xr7Sx3XoNzUMTir3pmlEl4zWoyMJT1ZRMRiARKglgIExWwBEQipno4dQ8ZNHZG8faPPe/lfZkNMTL4PH5W8CtnORPRp78DAfnFITPRZhAk2JhBSPdm43by10BCgnkLDVWWt+vE3DSN1ZGkYqWNpqEkvWBpGBjQMWCAQKw+pv/76C5dddhnkDCP91aRJE8yZMwflypXTR0fea7E0AvfcAWxe6/Xec1wOfFP7WVwx9R4USVE8rUj3jrGiJ12T+TJEBKilEIGN0WpDridxiEJ6v95IWTzXL+Hd2WVwd7FJWJZaF40rAZPHxKEiT1Hzy8yOiSHXkx0bzXsKGQHqKWRolVWsH3/TMFKGFTSM1LE01KQXLA0jAxoGLBCIhYeUXH4mzaJ9+4SportatWqFzz//HKVKldLFRuBLsVeRq9utcPy22OvN78sugfUPTEarvhcpX4Lm/oaxoCf3NjMcGgLUUmi4xmqtYdGTy4VjU6fA8Xx/pDp9G/Mnc+Nwb/LH+CatGUqITbCnv+TExRdxiVokaTMseookILzXoAhQT0HhC0th/fibhpE65DSM1LE01KQXLA0jAxoGLBCI9oeU3Nj68ssvx5EjRwx0rrrqKsycORPFixc3xEdi4NRbY5H09lCPW88VMUtc16HipGE4q0kZj/RQRES7nkLBjHV6J0AteefCWGsEwqmno+Jghfc6dkCNbX/gsuIpKBMvNi5yu7LFrM8xGIzRZW5HjjMZo3s4cNdtcSE39d1ug0GLBMKpJ4u3yGIRRIB6sn9n6cffNIzU9RcNI3UsDTXpBUvDyICGAQsEovkhtXTpUs0sysgwHnvcsWNHfPzxxyhatKgFYvYqsvO7tSj/yNWId7jyb2xPdimMSXgGOW2vxNDhJZAaxmZGs57yAfNFWAhQS2HBHDNvEm49nTx5Evfccw9mTJuGu1Pi0btcGhqkJHnwljNAByW/jBkl26JbMwdGDIlDkWSPbIywGYFw68lmzeftKCZAPSkGGoLq9ONvGkbqANMwUsfSUJNesDSMDGgYsEAgWh9SP/74I+Qsoiy5EbTuuuWWWzBhwgQkJ0f+X+SLvjuOGg9fgarxO/JbKGcVdS3yBW7ofxFuv8kZ9m+ro1VP+YD5ImwEqKWwoY6JNyoMPcnnT58+ffDuu+8iXlD+vFIaOpTw7uC/4Hoeo8p1RwOxnd5Hr8ShSmXfS9piosNs3sjC0JPNkfD2giBAPQUBL0xF9eNvGkbqoNMwUsfSUJNesDSMDGgYsEAgGh9Sc+fORYcOHZCTk2MgIr/tfeedd8SpNJF9LI3YsgiTXtuLhm/fhwsTVxraOMHxOBp83BeNGhTOYCMa9WQAzEDYCFBLYUMdE29UWHrKFR/YTz75JEaPHg35qTyuXFHcUybNK/MPsnvhsQr9USzBgWnDnWh+Cfc18grKBpGFpScbNJ23EAIC1FMIoCquUj/+pmGkDi4NI3UsDTXpBUvDyICGAQsEou0h9cUXX+DGG2+E/CNdf/Xq1Quvvvoq4uPl97yRe504AXx857fosrYPSsUdMzTkL1dDFJ//BcpXLLw2RpueDIAZCCsBaimsuKP+zQpTT/J5NGjQILz44osa57bxTjxbqQSap3rOdP0yswvurvgSXM4EvNHLidu60jSyozgLU0925MF7Co4A9RQcv3CU1o+/aRipI07DSB1LQ016wdIwMqBhwAKBaHpIffjhh+jevbsHhf79++Oll16C0xnZf3jv2XgIf3Z5Bi1zP/NoYwYS4ZyzGIk1K3ukhTMimvQUTm58L08C1JInE8ZYJ1DYepKm0dChQ/H888/nN+Klksl4sqLnKZ1LMluhc4X3cSquCB65xoHBj8UhznPf7Px6+CL8BApbT+FvMd8xlASop1DSVVO3fvxNw0gNU1kLDSN1LA016QVLw8iAhgELBKLlIeVweF+CJf9AHzx4cGSbRbv/xcGR45AydyySHcZldrLLTySURYrYxNtRp44FBagtEi16UkuFtVkhQC1ZocYyvgjYQU8ulwvDhg3DM888k3+bfVMTMapqaXFwgfEZtijzcnSsNB4uhxPXio/2d0fGh/UAg/wb5AuvBOygJ683xsiIJEA92b/b9ONvGkbq+ouGkTqWhpr0gqVhZEDDgAUC0fCQ8mUWjRw5Eo8//rjY+Nn4h7gFTIVTZMsW4L23kTtnGpw4cwqa/mYO1bkGJceOBtK874mhzxuO19Ggp3Bw4nsUTIBaKpgRcwROwC56kqbRiBEjMGDAgPybvzUpDuNrlkMRp/FZ9U5OPzxdoa+Wr04ZYMYbcahU0ZgnvxK+CCsBu+gprI3mm4WMAPUUMrTKKtaPv2kYKcPKGUbqUBpr0guWhpGRDUPmCUT6Q0ruCfH00097NPzNN9/EQw89FLlm0RefwzWot/wg9WibjDieWwSZA19FqduvFfM57TOAiHQ9eYXNyEIhQC0VCvaofVM76UmaRvKkzszMzHzeVyY4MaNWWZRwW3v2fnYfPFPuIW15WilxXsOnL8fhwnr2+czPb0CMvbCTnmIMfVQ2l3qyf7fqx980jNT1F2cYqWNpqEkvWBpGBjQMWCAQyQ+pKVOm4Pbbb/dodZz4gzs7O9sjPmIiNm6E68YrvJpFOS4Hfi16E+p98jRSq4uvnG12RbKebIYy5m+HWop5CSgFYDc9SdPIfV+96xOd+PSs8h7L0zLF5/6KrFb4PrEd5qRdjqHPVsY1V0b2nnxKO7cQKrObngoBAd9SIQHqSSHMEFWlH3/TMFIHmYaROpaGmvSCpWFkQMOABQKR+pCaOXMmbrrpJq8tln+IR+y1fz9yO7WD89BuQxMycuMwI/de7L7+XvR7oQoSEgzJtglEqp5sA5A3kk+AWspHwRcKCNhRT95Mo2fSkvBs5dI+WyzP/xyTOwilB92Pu2/nTtg+QYU4wY56CnGTWX0ICVBPIYSrqGr9+JuGkSKoohoaRupYGmrSC5aGkQENAxYIROJDSi436927t0drX3nlFfTte3q/B4/ESIg4eRLZnTsifvs6w93+mHkl7io3GgPvL4n7usfZaQWa4T5lIBL15NEIRtiCALVki26Impuwq57k6WndunWDnDGbd71RJgUPlUsTe9d5X3omTaPOyV/gkm6N8GSfODFTKa8kf4eLgF31FK72833UEqCe1PIMRW368TcNI3WEaRipY2moSS9YGkYGNAxYIBBpDylfG1i//fbbePDBBy0QsE+RI2PGI238mdNz5J39nlkfV1X6DJOGJOGqy+0/Kog0Pdmn93kn7gSoJXciDAdDwM56kqbRI488AvllSN51aZwTI6uUQrPUJK/Lk//JroTG5RbglpYpGP1snG1nnea1J9p+21lP0cY6FtpDPdm/l/XjbxpG6vqLhpE6loaa9IKlYWRAw4AFApH0kEpNTcWJEyc8Wvnqq69qf2x7JERQxJYFW1Crd0vDHe/PThPHKi/EO2+UQf263r9pNhSwQSCS9GQDXLwFPwSoJT9wmGSagN31JPfd69mzJz744AND2xpUroTvxYmfpZcsguOHLw1pE7MfRL+KT+Hq84Fxo+NRtKghmYEQErC7nkLYdFYdAgLUUwigKq5SP/6mYaQOLg0jdSwNNekFS8PIgIYBCwQi5SHVrl07fPvttx4tvO+++/D+++9H7mlookWbxi5AlTF3IdmZY2jf60VG4IYvbkfVKpFhFsmbjxQ9GUAzYEsC1JItuyVibyoS9CRPTbvzzjsxbdo0A+c6dergh/nzUbZ3T2Dd8vy0k2Jvu5pl1mknqF1UEZj+VhxKl4qc50V+QyLwRSToKQKxxuwtU0/273r9+JuGkbr+omGkjqWhJr1gaRgZ0DBggUAkPKTkcrNevXp5bZ2cyu9rmZrXAjaLXPPKfFww9k5xKo5xo+6juSnI/no5StUsYbM79n87kaAn/y1gql0IUEt26YnouI9I0VNGRgZuvvlmzJ492wC+efPmmDd2LFJvugrQHezQJ+4dfFjqGi1vzeLA7HfiUKUyTSMDvBAEIkVPIWg6qwwBAeopBFAVV6kff9MwUgeXhpE6loaa9IKlYWRAw4AFAnZ/SB0+fBglS5b02rKcnByPY4m9ZrRp5M/Pz8clUz3Nop04GyVnTEBKnVo2vXPft2V3Pfm+c6bYjQC1ZLceiez7iSQ9yaXX119/PRYsWGCA3qFDB8wqLTbDXv5Dfrw8FOGGyuPywxWKAF+/K2YeVadplA8lBC8iSU8haD6rVEyAelIMNATV6cffNIzUAaZhpI6loSa9YGkYGdAwYIGAnR9Scnr+jTfeiDlz5ni0TN53YmKiR3ykRMwftACtPuuOBLeZRb+WuBUXzh2OxGJJkdIUw33aWU+GG2XA9gSoJdt3UUTdYKTp6eDBg2jbti1Wr15t4PzBFZfh7n83GuK+yuyMIaUfxebkqlp8KfFo/FosTzu3Nk0jAyiFgUjTk8Kms6oQEKCeQgBVcZX68TcNI3VwaRipY2moSS9YGkYGNAxYIGDXh5RLTLnv06eP4dSYvOYdOnQIJUpE1lItbQnBpr+AjRuxcsbfqL/iJQ+zaFXF7ppZ5Iy3/2loeX3h/tuuenK/T4btT4Basn8fRdIdRqKedu3ahRYtWmDr1q35qNPEq30XVEJCfsyZFyszL0a/ki/i95SzUSwe+Oq1ONSrQ9PoDCF1ryJRT+paz5pUE6CeVBNVX59+/E3DSB1fGkbqWBpq0guWhpEBDQMWCNj1IfXaa6+hb9++hhbJGUU7duxA2bJlDfEREXjvHeD1YT5vdUOt7jhv1nA4nJFrFsnG2VVPPsEzwbYEqCXbdk1E3lik6mnTpk1o1qwZ9u/fn899cvlUdCstNizych3NSUa7tLn4o0hNJInHyZyXnWjcMLKfK16aWehRkaqnQgfHG/BKgHryisVWkfrxNw0jdV1Dw0gdS0NNesHSMDKgYcACATs+pGbNmoVOnToZWlOsWDGsWLEC55xzjiE+IgLr1sElNir19T3vX+d1R+2ZwyE2ZIqI5vi7STvqyd/9Ms2+BKgl+/ZNJN5ZJOtJLktr2rQp5DJtecknxfCSyXi8cjnE52Zrcfp/dmaXR+syc3EgoZSYyQp8+oITLZtF/vNF38bCfh3Jeipsdnx/TwLUkycTu8Xox980jNT1Dg0jdSwNNekFS8PIgIYBCwTs9pCSppD8NjU7+8wfwU5hpCxcuFCbmm+hiYVbRLTD1fFqOLZt8HofWy7ohlrTX4gKs0g20G568gqdkRFBgFqKiG6KmJuMdD3JDbDlnkZyuXbedW5KESzp9RBKfTMTcDOO1mbWwxUVZiIzrgjihGk0fYgTV7ShaZTHLtjfka6nYNvP8moJUE9qeYaiNv34m4aROsI0jNSxNNSkFywNIwMaBiwQsNNDatu2bWjSpIlh6r1s0tSpU3HLLbdYaF3hF8kdPx7OMc8YbmRdZl1sFyehVejSBg2H3xg1ZpFspJ30ZIDOQMQRoJYirstsfcPRoKdx48ahR48eBs61a9fG0u++Q+nePYHNvxvSlmS2xv/ZOw84KWr2j//u9mhHP/od0hGk995EOkjvKB2R3jsqSEdQuoDSFBCU3os0eZFeleorTQR9QURA4H/1P1nY3OTq7G5md2bnmc9HNk8mySTf/LzMPJNJGmdbggj/JLApZ9aOV5xG1clpJEBy0fAFPbnYdMqmAwHSkw5QJRepfv4mh5E8uOQwksdSKEktWHIYCWjIcIGAUQYptpB19erV8dNP4g3vpEmTMHr0aBda5v0skbduI7xBFSRFBK/ML2H5UTHbLiwflRSN6vnejbtR9MSBU8C0BEhLpu06Q1bcF/TEZhcNHz4cM2bMEBjXrl0bW1csR7K2yqfcD34Xzu0ObYx2wbMR5edvdxqtm+CPGlV9b+wRGu0Bwxf05AFMdAmNBEhPGkF5MZn6+ZscRvI6ghxG8lgKJakFSw4jAQ0ZLhAwwiDF1mVgaxbt3LlTaEG3bt2wePFiZWkf893cRr34P/yvQn1kCYve/jhSaV2zwG3oM6046tQ0X5uEzonHMIKe4qkaRZuMAGnJZB1m8Or6ip7YeNmqVSts2bJFIN6rVy/MHz4Mfi3qAS+eCue+DeuInsEfK3F+9s/TNkz0R7XKvjkGCQ3X0fAVPemIiIp2ggDpyQlYXkqqfv4mh5G8TiCHkTyWQklqwZLDSEBDhgsEvD1IRUZGol+/fliwYIFQe7ZWA7shTpEihRBvBoMtMXGu3miUvLNCqO6a8G7I+uU4n3676209CcDJMDUB0pKpu89wlfclPT169AhVq1bFzz//LHBmu4v2r/UW0K4REP5ygWxHglVh3TAw6wiE+ydDgLKm0QZaCNuBxqVfX9KTSwAok1QCpCepOHUpTP38TQ4jeYjJYSSPpVCSWrDkMBLQkOECAW8PUp9++imGDBki1LxgwYL4z3/+gwwZMgjxZjCYs2j7+9vQ6D/KehKq49ewvLi7cBeq1gxUxfpe0Nt68j2i1m0Racm6fa9Hy31NT9evX0fp0qXBnEfqY9q0aRj+5ptAl+ZAFJvXGn1cDSuAN7NsxHNbSrvTaPNUf1QqTzONoglpD/manrS3nFLqQYD0pAdVuWWqn7/JYSSPLTmM5LEUSlILlhxGAhoyXCDgzUFq48aNaN5cualVHWnTpgXbKS1fvnyqWHMEmbNo+cQbaLP6TQT6h/FKP4+04fy4A6jQJi+P89WAN/Xkq0yt2i7SklV7Xp92+6Kejhw5gmrVqoHN1FUf3bt3xxcd2gN93lWio3dVY2nG+n2C+Rlb25OzmUZbp/ujQllyGtmBOPGPL+rJieZTUskESE+SgepQnPr5mxxG8gCTw0geS6EktWDJYSSgIcMFAt4apC5cuIAyZcogLCzascLWKjp8+DAqVarkQku8nOX//g97Ru5H5V29kFLlLGK1+qndAhQd28TLFfTM5b2lJ8+0jq7iSQKkJU/S9v1r+aqeVq5ciXffZY4h8fjnn3+Q5vAhYPj74gnF6hXwJdakq6UsaeSHpIrTaPccG0oUVQJ0aCbgq3rSDIASSiVAepKKU5fC1M/f5DCSh5gcRvJYCiWpBUsOIwENGS4Q8MYgxXZEY84iNqVefaxduxatW79886mON3z45k2gYeU4q/lb8Q54bfX0OM/5YqQ39OSLHKlNAGmJVCCTgK/qie2cFtfGEGzm0cGDB+E3dRKw8vNYKPeENkLb4Ln23dNS2YB9i2x4PR85jWKBiifCV/UUT3MpWmcCpCedAUsoXv38TQ4jCUBfFUEOI3kshZLUgiWHkYCGDBcIeHqQYlPnO3bsiFWrVgm1nThxIsaMGSPEGd5gjqIN64Aln8VZ1cep8yHNwd1A8uRxnvfFSE/ryRcZUpteEiAtkRJkEvBlPb148SLODSLYZ99Ny5YF6pRXUIqfpjG2n0R+gMlZutsxZ0oGfL/EhhzZyWlkB5LIP76sp0SaTqd1IEB60gGq5CLVz9/kMJIHlxxG8lgKJakFSw4jAQ0ZLhDw9CC1ZMkSsPUV1EfLli2xZs0a2GzKa06zHGu/ASYMU+7BY9+EsyY8D0iHFJu3Ablym6VFUurpaT1JqTQVYkgCpCVDdotpK+Xrevr999+RPXt2oX9SpkyJixcvIueVy8BHynj15KFwPizKD3VT7sbZlAXs8TlSKU6jZTZkykROIwFUHIav6ymOJlOUjgRITzrClVS0+vmbHEaSoCrFkMNIHkuhJLVgyWEkoCHDBQKeHKTYukWlSpVCREQEr2muXLlw+vRpBAUF8ThDB5iD6ItFwOwJCVfz+FUglXL3bbHDk3qyGFrLNZe0ZLku17XBVtDT3r17UadOHYFjzZo1sWvXLiRhsTu2A6P7KoHoFx3Xw3KjeuateBqQ2p6vkLI56falAUiX1m7SP/EQsIKe4mk6RetAgPSkA1TJRaqfv8lhJA8uOYzksRRKUguWHEYCGjJcIOCpQerx48eoUKECLl9W3nS+OvyUBTePHj2K8uXZdHmTHJ/NBL78NM7K3gzLiXtl3kHFpV0t9RmaGoan9KS+JoV9kwBpyTf71VutsoqeRo0ahalTpwqYp0yZgpEjR76Mm618Qr14hnD+v2H50CjjGvyZNJM9voIyUWn94gAEBgrJyFARsIqeVE2moI4ESE86wpVUtPr5mxxGkqAqxZDDSB5LoSS1YMlhJKAhwwUCnhik2KKc7733Hr788kuhhrNmzcKAAQOEOEMbJ08AnZvFquI3YV2wOF17VGr8OiaOCWAbz1j28ISeLAvXYg0nLVmsw3VurlX09Pz5c1SvXh0nT54UiB45cuTlDqRsZ9IWjYBffxbO3wvPhGbp1uFqilz2+DrKV2or5wUgiX1qkpCUDIWAVfREne0ZAqQnz3B25yrq529yGLlDUsxLDiORhzRLLVhyGEnDatmCPDFIsQWu33nnHYFxkyZNsH79enOtW/RuW+DMYaEd4zAVszO1Q5syflgw3absViOctpzhCT1ZDqpFG0xasmjH69RsK+np2rVrKFKkCMKYc+jVkSNHDpw9e/bl59+/3QZaNYy1ptGjiEB0D/wa+9KUsefqVNkPn020WfoliINfzF8r6Slm28mWT4D0JJ+p7BLVz9/kMJJHlxxG8lgKJakFSw4jAQ0ZLhDQe5Bin6AVL15cuHHNmjUrzp8/j8yZM7tQYy9l+Vl5G9umrnDxKVEfY3rmTqj9+ss3sUmTCqctaeitJ0tCtWijSUsW7Xidmm01PX311Vfo1KmTQJO9uGHx7HNw3LsHvNMS+OOmkIYZW0JbYUjmUXiQJAM+bO2HQb1NtCFFrNboE2E1PelDkUp1ECA9OUgY91f9/E0OI3n9RA4jeSyFktSCJYeRgIYMFwjoOUg9e/YMlStXxrlz54SaHTp0CNWqVRPijG5EFc8Nv/BQoZoZM/wXJbMnwaYvAqBsRkOHQkBPPRFgaxEgLVmrv/VurdX0xD4F79ixI1auXCmgZXaHDh1exj36G+iizP69Jo7R7OTTyKQYmHQx1qd/E4sH+qNVU4tPnxUo0lgXAweZbhKw2t8nN3F5Jbv6+ZscRvK6gBxG8lgKJakFSw4jAQ0ZLhDQc5Bi6xPNmTNHqJWw+KZwxrhG1Nat8Bv5vlDBI6E1MKjwCuxWtiBOn97CixYJVOgmOgYOMt0goOffJjeqRVlNSsCKenr48CFKly6Nmzdv8l5Lnjw5rly+gpy5cr6MU9Y8Qp+ewPF9PI0jwJxGeTNeQLgtBTZN8UfViuQ0crCxop4cbadf+QRIT/KZyi5R/fxNDiN5dMlhJI+lUJJasOQwEtCQ4QIBvQap7du3o1EjZWFN1VG3bl1sVZwvScy0iubePYgc2BX+qm2II5U2tU+7EzO+K4rsIeQsUnUxzTBSw6CwWwT0+tvkVqUos2kJWFVPbCfSSpUqCf1Wu3Zt7NixAwEBAS/jI5VR7ds1wLQPgNAXQtp3k67CtrRVkEzxFR1caEPB12nMY4CsqidBHGRII0B6koZSt4LUz9/kMJKHmRxG8lgKJakFSw4jAQ0ZLhDQY5C6e/cuChcujEePHvEaBQUF4cKFCwgJCeFxhg/s+x6R/TsLziJW5yl+k9Dgm04oXpRunGP2oR56inkNsq1BgLRkjX72VCutrKfx48dj3LhxAurZs2ejf//+QhyUGUl4pxVw6wqPXxH+PgZmG2W3MydXnEbLbciWlcY+K+uJi4MC0giQnqSh1K0g9fM3OYzkYSaHkTyWQklqwZLDSEBDhgsEZA9SkcqbymbNmmHLli1CbXbu3Il69eoJcYY2Dh5EZJ93YjmLloX3Rsjno1CnJk3Nj6v/ZOsprmtQnDUIkJas0c+eaqWV9fTixQv7uoEnT57kuP2VLT3ZSxz2ckc4Fn0OzJnIo/6OSIliGY/jaUBqe1zhjMDuFbRun5X1xMVBAWkESE/SUOpWkPr5mxxG8jCTw0geS6EktWDJYSSgIcMFArIHqYULF6JXr15CTQYOHIjPPvtMiDO08ccfiKxTEf4R4iLXq8O64tmYcejeiXaMia//ZOspvutQvO8TIC35fh97soVW19OlS5dQrFgxREREcOwVK1YE24RC+Ez86lWgeU2ehgVWhPdUZhmN5nFNi/thyWc2KD4nyx5W15NlO16nhpOedAIrsVj18zc5jOSBJYeRPJZCSWrBksNIQEOGCwRkDlJx3ZCyt5fHjx9XdhEzyTZiys4yEZ07wXZKXAD0m7Au+LnjOEwcE6BsSewCaItkkakniyCjZsZDgLQUDxiKdokA6QmYN28e+vXrJ/BjG1PEjENfZZOHA1t5uogoPzQM3I7jqaJnI41p6Yehfa378oT0xOVBAQkESE8SIOpchPr5mxxG8mCTw0geS6EktWDJYSSgIcMFArIGqefKTitVqlTBmTNneC3YlPfTp0+jRIkSPM7ogcgVy+E/fYxQza2hLbG21gwsn5tEWSRUOEVGDAKy9BSjWDItSIC0ZMFO17HJpCfYZxfVqlULB5VPrh0HW/j68uXLyJcvnyMKUNYhRN0KQGT0bKT/RWRAuQz78U+SdDzd1yP90aieNacZkZ64DCgggQDpSQJEnYtQP3+Tw0gebHIYyWMplKQWLDmMBDRkuEBA1iA1YcIEfPjhh0IN2Gdo7HM00xzKTXRUnw5QTyD6X3h6dH3jP1i7Kp0yS8o0LfFaRWXpyWsNoAsbhgBpyTBd4RMVIT297MYrV67Y1y1i6w06jjp16oCtM8he8vBj/lxgwVRussCOsBboEPwpjwtQBsv9820oWkg9avLTPh0gPfl093q8caQnjyN3+oLq529yGDmNL94M5DCKF417J9SCJYeReywpt5ytYdmsojJlyiBK+ZzLcbAb0O3bt0dv2+s4YdRfZd2GiBZ1YIsKF2rYJ8VKjNpcA9lDrHdDLIDQaNBNj0ZQlCxRAqSlRBFRAicIkJ6iYc2cORNDhw6NjlBCy5YtQ+fOnaPj2FpHndoDZ/8THaeEOiZZia3pqvK4LCmAw1/ZkCmTtcZI0hOXAAUkECA9SYCocxHq529yGMmDTQ4jeSyFktSCJYeRgIYMFwi4O0ix3VfYwpnnzp3jV0+aNCmuXb2GnLly8jhDBx7cR3j9Wgh49kCo5syosaiyoifKl1W9dRVSkBGTgLt6ilke2dYlQFqybt/r0XLSUzTV0NBQ+7it/oQ8MDAQ165dQ0hISHTCv/4CapUHQp/zuGdIhVqptuFyitw8rnx2YPOSACRLxqN8PkB68vku9mgDSU8exe3SxdTP3+QwcglhnJnIYRQnFvcj1YIlh5H7PK1egruD1OTJkzFmjLjmT6w3lUaG/PgxIlo2ge33a0ItN4W1xePx09GxnXUX9RSAaDTc1ZPGy1AyCxAgLVmgkz3YRNKTCJs5i0qXLi1EtmrVCmvXrlU2dlDNFtqyGRjVW0j3OCotaqfeimspol8Kdanqh5kf2yyzKQTpSZAEGW4SID25CdAD2dXP3+QwkgecHEbyWAolqQVLDiMBDRkuEHBnkLp48aJ9m171Wgj169fHtm3bxLUQXKiXR7IoC3VHdWgNv6vRC3Wz654KLY91bVZjyoTklrn5lcXbHT3JqgOV4xsESEu+0Y9GaQXpKXZPsHUH2fqD6mP9+vVo3rx5dBT71Py9rsCPe6LjlNBfEelRJ902XE+uTC96dSzs7482za0xI5f05Oh1+pVBgPQkg6K+Zaifv8lhJI81OYzksRRKUguWHEYCGjJcIODqIBUeHo6aNWvi8OHD/KrsU7SrylpAuXLl4nGGDvTpCRzcJlTxVthrGFlyO1Z8nQFKc+hwkoCrenLyMpTcAgRISxboZA82kfQUG/a///5rn2XExm3HERQUBLYwdqZMmRxRwLNnQGdlPaOLJ6PjlNCf4RlRN2grbiULtsezRbAPKItgF7HAItikJ0EKZLhJgPTkJkAPZFc/f5PDSB5wchjJYymUpBYsOYwENGS4QMDVQWrRokV4//33hSt+/vnnseKEBEYyflE+QWv6plCjP8OD0DF4J1Z+F4JMGVVT8oVUZCREwFU9JVQmnbMmAdKSNftdr1aTnuImy176VKtWTTjZrVs3fPHFF+KnaU+fKitetwWunhXS3gnPhnKZ9+G57eU2otmVn8OrA5AurZDM5wzSk891qVcbRHryKn5NF1c/f5PDSBMyTYnIYaQJk/OJ1IIlh5Hz/CiHSMCVQerWzVt4vcDrYAtnOo6qVati//79ptkV7enEz5DqmxmO6uNxRHI0SrcL877Mh2JFyFnEwTgZcEVPTl6CkluEAGnJIh3toWaSnuIHPWDAAMyZM0dIsHfvXtSqVUuIw9MnQPtWwK8/CfGzIkdhfJboF0gNCgFfzwtQPk0XkvmUQXryqe70emNIT17vgkQroH7+JodRorg0JyCHkWZUziVUC5YcRs6xo9SxCTg7SLH1itj6Bps3Kwthvjr8lbvCCxcuoHDhwo4oQ/+GhUbhr+IVkNX/Dq/nkvC+SPrxCLzbxofvcHlr9Qs4qyf9akIlm50AacnsPWis+pOe4u+PR48e2cfvu3fv8kQFChQAWxib7Z4mHMpGEWjfArhxiUf/G5UC+TOc5rOM2Ilx7fwwoKfvbhpBeuLdTwEJBEhPEiDqXIT6+ZscRvJgk8NIHkuhJLVgyWEkoCHDBQLODlLffvst2rRpI1xp0qRJGD16tBBnZOOr/ifQcV8zoYozyu/EkCXFaJFrgYrzhrN6cv4KlMMqBEhLVulpz7ST9JQw5+3bt6NRo0ZComnTpmH48OFCnN349b9A4+pC/MKAsRiVvocQt2WyP6pW8s2XMKQnoavJcJMA6clNgB7Irn7+JoeRPODkMJLHUihJLVhyGAloyHCBgDOD1P379/H666+DvY10HGxW0cmTJ5EiRQpHlKF/9238C0VG1kCWgIe8nn9GZEGq06eRMiV9isahuBhwRk8uXoKyWYQAackiHe2hZpKeEgYdpeyG1rp1a6xbt44ntNls9o0s8ubNy+N4oF8vYP8WbkbYUuCtFNtxPkV02jQBwInVNmTJ7HtjK+mJdz0FJBAgPUmAqHMR6udvchjJg00OI3kshZLUgiWHkYCGDBcIODNI9ejRA19++aVwlSNHjqBSpUpCnFGN3878ib/bdkexJGeEKj7oOB4ZR3QX4shwjYAzenLtCpTLKgRIS1bpac+0k/SUOOebN28if/78YLugOo4mTZpg48aN4gLY7OS1a0CzNx3J7L8v/FOhl+1zbEpXVbFfOolqKP6jdYsDoPiefOogPflUd3q9MaQnr3dBohVQP3+TwyhRXJoTkMNIMyrnEqoFSw4j59hR6tgEtA5SbAHMOnXqCAUMHjwYM2fOFOKMaoTv3IMXQ3ojld9zoYoPslVGxt3fwOfuZoVWes7QqifP1YiuZFYCpCWz9pwx60160tYvn376KYYMGSIk3rlzJ+rVqyfE2Y3B/YHd62PFXwotjE9SjuSOowkd/NC3h295jEhPsbqdItwgQHpyA56Hsqqfv8lhJA86OYzksRRKUguWHEYCGjJcIKBlkHqsLHJZvHhxsLePjiMkJAQXL15E2rQG3ztXWaQbE8YD34ozo1g7HvsFIc0Ph4CgIEez6NdNAlr05OYlKLtFCJCWLNLRHmom6Ukb6BcvXqBMmTL28d2Rgy2Afe7cOSRPntwR9fL32TOg67vAT8fE+FfWN2Fd0Dt4HNgqRntn21Cq+MtZR3EmNlkk6clkHWbw6pKeDN5BSvXUz9/kMJLXX+QwksdSKEktWHIYCWjIcIGAlkFq5MiRYItfqo8dO3agfv366ijjhZmzaMxIYMuqWHX7KzIjUq1di2TFCsY6RxGuE9CiJ9dLp5xWIkBaslJv699W0pN2xt9//z1q164tZJgzZw769esnxNmN58qs3fe7AaeUly9xHKVTH8H15NmRPSVw5JsApEkTRyITRpGeTNhpBq4y6cnAnfOqaurnb3IYyesvchjJYymUpBYsOYwENGS4QCCxQer8+fMoUaKEUPK7776LFStWxF7TQEjlZSMBZ9HusGbIt24S8hYz+OwoLyN05fKJ6cmVMimPNQmQlqzZ73q1mvSknSxbALtly5bYsGEDz8RmF924cQNZs2blcTzAxttdO4AZk4E/b/FoFtgQ1h7dgqfY41qX8cPCT2w+sRsp6UnoZjLcJEB6chOgB7Krn7/JYSQPODmM5LEUSlILlhxGAhoyXCCQ0CAVERGBmjVr4ocffuAlp06dWlnr8lrcN408lZcDoaHA8MHKHPiNQkVCo/wwwjYPZca+jQ5tfGs9BaGhXjQS0pMXq0WXNiEB0pIJO83AVSY9Odc5v/zyCwoWLIhI5gx6dfTp0wfz5s1zmLF/lXsGNKoF3FYWxFYdPQOW4Nv0SrxyLOzvjzbN2Udq5j5IT+buP6PVnvRktB6JXR/18zc5jGLzcTWGHEaukkskn1qw5DBKBBadTpRAQoPU119/jY4dOwplLFu2DJ07dxbiDGU8fQL0VKbHnzsiVIs5i7olWwn/qlWxXFlLwc93llIQ2ultIyE9ebtudH1zESAtmau/jF5b0pPzPfTBBx9g4sSJQsbTp0+jVKlSQpxg3LkDNKgCRITx6McRyVE5/SHcSZYVSZSx99gyG/LkMvcgTHri3UsBCQRITxIg6lyE+vmbHEbyYJPDSB5LoSS1YMlhJKAhwwUC8Q1SDx48QL58+fDPP//wUitXroyDBw8iICCAxxkqcP8+0KktcOuKUC2Hs+h45io4vsaG9OnNfaMqNM5gRnx6Mlg1qTomIEBaMkEnmaiKpCfnO+vRo0fInz8/2P2A46hRowb27dsHf/8EZglt2QyM6u3IYv89G1oGtYK/RaSfDWVDgB0rApR7CSGJqQzSk6m6y/CVJT0Zvoto0WuduogcRjqBJYeRTmAtWmx8g1T//v0xd+5cgcqZM2dQsmRJIc4wBnur2bYx8PefQpX+jUyCLilWY2+actg+zR+VyidwkyvkJMMVAvHpyZWyKI+1CZCWrN3/sltPenKNaFwzjdetW4cWLVrEX6CyBhKGDQJ2fiekmRb1EaZm7mqPm9DBD317mPfTcNKT0LVkuEmA9OQmQA9kVz9/0wwjecDJYSSPpVCSWrA0w0hAQ4YLBOIapE6ePIly5coJpQ0ePBgzZ84U4gxldHkHOHFAqNJfEWnQKvU6nE1ZAMOa+GH0IPPenAoNM7ARl54MXF2qmoEJkJYM3DkmrBrpybVOCw8PR5Uqyuzc48d5Aa+99houXbqEVKlS8bhYgX//VT5NexN48Ds/9Xt4VhTJdkyx/cBG48OLbHijgDln/JKeeLdSQAIB0pMEiDoXoX7+JoeRPNjkMJLHUihJLVhyGAloyHCBQMxBik0zZ5+eMaeR48iYMSOuXr2KoKAgR5TxfovnAcL/T6hXiTRHcStZMIpnVta/XhWAJEmE02ToQCCmnpIlS6bDVahIKxAgLVmhlz3XRtKT66yULuyTAABAAElEQVSPHj2KSpUqCQV88sknGDp0qBAXyzh7FninkRBdPeX3uBCY3x5XOCOwf3UAkiYVkpjCID2ZoptMU0nSk/G7Sv38TQ4jef1FDiN5LIWS1IIlh5GAhgwXCMQcpL766iu89957QkmrV69Gu3bthDhDGYozC81rClXqlmQFNqSrYX+LeWSxDQVeN+dbTKFRJjBi6okcRiboNINWkbRk0I4xabVIT+51XJcuXbB8+XJeSFLFy3P79m1kyZKFx8UKsE/Tqiuzlf+6y08tC++NwdlGcHtEUz+MHGi+2b+kJ96FFJBAgPQkAaLORaifv8lhJA82OYzksRRKUguWHEYCGjJcIKAepPLkyYNChQrh2bNnvKSaNWti7969CS9wyVN7KTBkALBrHb/4w4hUKJD5LML9k8Ls6yTwRpkkoNYTeyNNDiOTdJwBq0laMmCnmLhKpCf3Ou/WzVvIkzcPIiMjeUFDhgzBjBkzuB1nYNpk4Kv5winmNBqSdRii/PyVj9OA72fZUKqEuV7qkJ6ELiXDTQKkJzcBeiC7+vmbHEbygJPDSB5LoSS1YMlhJKAhwwUC6kGKLW65bNkyXoqfsvf8hQsXUKRIER5nuMDlS0DL2kK1Po0cjQlZeqJ0NsWP9LW5d2IRGmYCQ60nchiZoMMMXEXSkoE7x4RVIz2532kffPABJk6cyAti9whXrlzB66+/zuNiBS5dBFrViRX9Q+hbaJt1Lp7bUiJ3GuDI2gCkSBErmWEjSE+G7RpTVoz0ZPxuUz9/k8NIXn+Rw0geS6EktWDJYSSgIcMFAo5B6qeffsKAAcpMHdUxevRoTJo0SRVjsCB709m6KXD5NK/YM2VXtAIZzuJ5ktQ4tsSGfHnM9daSN8SkAYeeWPXJYWTSTjRItUlLBukIH6kG6cn9jnz48CFy5cqFJ0+e8MLY5+rss/UEj8+VGUbzlJlGMY7/huXFW5k34nFAWgx52w9jh5jn0zTSU4zOJNMtAqQnt/B5JLP6+ZscRvKQk8NIHkuhJLVgyWEkoCHDBQJskDp06BB69eqF69ev8xKCg4Nx+fJlpEmjvPoz6rFtKzDifaF2MyLHYlKWHpjayQ89u5jn5lNohIkNuukxcecZrOqkJYN1iMmrQ3qS04Hz589H3759hcJ+/PFHVKxYUYiLZWzeBIzpB0RFf9LG0qwP64DuwZPtn6YdWmBD0ULmeMlDeorVwxThBgHSkxvwPJRV/fxNDiN50MlhJI+lUJJasOQwEtCQ4QIBNkixmUSffvqpkHvdunVo0aKFEGcog23Z+6aymOa/j3i1boeFoFTWQyiTIwm2rwiAjfxFnI2nAnTT4ynSvn8d0pLv97EnW0h6kkP7+fPnKFy4MG7cuMELrFatGg4cOJD4Wods17TubYEXT3leNis4R6bLiPBPgqKZgH3Krmlm2NGU9MS7kAISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQEOGCwTu3LmDvHnzIjQ0lOeuXbs2du3alfjNH8/hhcC4D4DvlgoX7phkJXamr4rjy2zIk8scbymFBviAQTc9PtCJBmkCackgHeEj1SA9yetI9kKpVatWQoE7duxA/fr1hbg4DWVnNdQXZyM5Zgaz9FOU2cHvm2B2MOkpzt6lSBcJkJ5cBOfBbOrnb3IYyQNPDiN5LIWS1IIlh5GAhgwXCPTr1w/z5s0TcrKFrosWLSrEGcrYsxsY1FWo0qHQWmgasgQT3/FDn+40tUiA40GDbno8CNvHL0Va8vEO9nDzSE/ygEdERKBy5co4fvw4L7RUqVI4ceKEMrNXw/jbqglw6RTPywL9bAuxMqg+ApR3PSeX25Arp7Ff+pCehO4jw00CpCc3AXogu/r5mxxG8oCTw0geS6EktWDJYSSgIcNJAufOnUPJkiWFXEOHDsUnn3wixBnKuPMb0LA6EP5/vFrPI22okvYHJA/JjoNrzDGdnVfexwJ00+NjHerF5pCWvAjfBy9NepLbqfv27UOtWrWEQjds2IBmzZoJcXEamzYq6xmJ6yD9E5ECb2Q6bd81rUZeZW2jLwKUWc5x5jZEJOnJEN3gM5UgPRm/K9XP3+QwktdfhnMYsd0d2E5Q7CGZvQXZv38//vjjD3uLBw8ejJkzZyba+k2bNmkbDJWSNm7ciKZNlR2cJB9qwZLDSDJcCxUXqewwVrNmTfuC145mp0uXDr/++iuCgoIcUcb6DQsDWjQCfv1ZqNcQ/7lYmqEx9s+xoWQxY7+VFCrugwbd9Phgp3qpSaQlL4H30cuSnuR2bFRUlN1hxO6lHccbb7yB8+fPK2sQJXFExf2r5MXYUcCmr4XzcyOG48Osfexxiwb4o3Uz43qMSE9C15HhJgHSk5sAPZBd/fxNDiN5wA3nMPLzi/9BkhxG8jqeSjIHgbVr16JtW2XxSdWxZMkSdO0qfuqlOu394HZlV7Th4q5om8LaokvwNPSu5YdJYzVMhfd+K3y6BnTT49Pd69HGkZY8g5t9XuQ4NH1O5Ehssl/Sk/wOO3LkCKpUqSIUvHr1arRr106Ii9NgTqNunYDj+/hptgB2yfTH8L+kGZFSGc7Pf2dDhqD47915Ri8ESE9egO7DlyQ9Gb9zyWGkTx8Z2mFUsGBBlChRAmvWrLG33hWHERsoM2fOHC+9LFmyIHXq1PGed/WEWrA0w8hVitbO9/jxY7z++utgHnLHwf6fOHXqFFKmTOmIMt7vsMHAjrW8XnfCs6F05gNIG5gCp9cFKP+/8VMU8BIBuunxEngfvCxpyf1OPXtX+ew4uES8BT179gxZs2bFkydP7PcrbNZ1YGAgEssXb4EGPkF6kt85bJZR48aNsW3bNl547ty5cfnyZSRLlozHxRtQZjSjcTXh9NbQlugY8nLGf9dqfpj5sTFfBJGehG4jw00CpCc3AXogu/r5m2YYyQNuOIfR7Nmz7U4itpgv++Tm7t27CAkJsbfYFYfR77//juDgYHnENJakFiw5jDRCo2QCgQkTJuDDDz8U4ubPn49u3bppu8kTcnrIYG/BKxUHnv7NLzgOUzE7Uzt8M9Yf9WoZd+o6r7AFAnTTY4FO9lATSUvugZ5zbB4G/Dgei6tNQY8y3eMs7Ntvv0WbNm34OWY/yv0P3vthFGZX+gj9K4jrzPCEJgyQnvTpNPaiqWzZskLhy5cvR6dOyuwhLQf7NG3jV0LKZsk34mDqUvY4o35qTnoSuowMNwmQntwE6IHs6udvchjJA244h1HMppHDKCYRsq1A4NbNW8ibLy/UnyE0bNgQQ4YMQaVKlYzrMDp4EOjTQeii8ql+QMHyubB8tg0JfHEq5CFDXwJ006MvXyuVTlpyvbfZDKFSa2rzAuJzGrF17A4cOMDT5X2vAH4t8Be3z7Tdm+AMJZ7QBAHSk36dxJyOzNnoOPLkyWOfZZQ0aVJHVPy/fysvgWqWAUJf8DS/hOVHhWy7EelnQ4kswPerA5Td1/hpQwRIT4boBp+pBOnJ+F1JDiN9+ogcRvpwhVqwNMNIJ8g+XGyXLl3A3v45DrY45cqVK5EpUyZDO4yi3usKvyO7HdXG+dCSqJ19E86ttiE4mzHXOOCVtVCAbnos1Nk6N5W05B7gL059aZ8p5CglptOIfTZUqFAhx2mgvvJwXysNt2Om5ydMGiA96ddxce24yhxIrVq10nbRb1YBE4cLaWdGjsHELO/Z4+b19keH1saaRUx6ErqLDDcJkJ7cBOiB7Ornb5phJA84OYzksRRKUguWHEYCGjISIXDs2DFUrFhRSDV58mRUqFDBHmfYGUbKuhqRb5WG+nZxuP9sZO/XDP3fM9hrR4Gu9Qy66bFen+vVYtKS+2RjOo3SnvJHppMvnUJs51j2n/2I4SxSp2Pn2QYJ7FNmMx+kJ317r1mzZmA7CTsOtvzD2bNnlZlBGsZo9sl547rAzcuO7AiP8kP11PtxKUUepFKKOL/OhqD0xnk5RHriXUUBCQRITxIg6lyE+vmbHEbyYPu8w4gNjuytym+//YaMGTOiePHiqFu3Ljp06JDgYtjuIlYLlhxG7tK0Tv7IyEhUq1YNbLF2x/Haa6/ZNcy2wWWHUR1G4ZOnImDVXEe18a+yk8pbuX7GwY2pkDw5j6aAAQjQTY8BOsFHqkBaktOR849+jr5HVWvWff8Y2BkaXXgMZxFinldSss0QHjx4oPy9Ne8fXNJTdJfrETp69Kj9HkJd9tatW9GoUSN1VPzhn38C2tRXziu7p706vgnrgt7B4+xWjxp+mD5Og/PJkVnnX9KTzoAtVjzpyfgdrn7+JoeRvP7yeYdRfKjYN9tfffWVsJBkfGnjimeCTOi4f/8+ihQpYk/yyy+/gD3000EEEiPA3vyxt8Tqg32K9vbbb+P06dP26NKlSxtuDSO/iz8j4N3GwuwidhOZdt5YvFXdOG8b1VytHGY3PUbWk5X7xmxtJy3J6bGff/4ZZT6sBLwV/bkZdwppcBaxWvgpi8SdPHmS33vIqZlnSyE96cub7ZjG1kPcv38/v1C5cuVwUFl/0N9fPT+Yn44VCPhkKmzfLObxf4RnxBvZTin2y7F+z8wIFHt5+8vTeCtAevIWed+8LunJ+P3KnEQ5c+a0V5QcRvL6y2cdRmx3qfbt26NMmTLIli2bnRibZbR582YsWrQIbNBkx9q1a9G6dWt72Jl/2I2Z1mPdunX2Hd+0pqd01iQQGhqKzp07g22Z7DjeeOMNzJkzR9t0cUcmD//6KfUuNXYE0jy7z68cpkxT75lzK94Z9ogWuuZUKEAEiAARiJ8Am0U65OAYRFYLjE70PBJIoXqQj2NmEUscGBiISZMm2WdRR2emEBGITeDMmTMYOnSocOKTTz4Bexml5Uip7F5cbrK4llGDFNtwNFVRe/b8aZ5gyoBzigNKS2mUhggQASIgjwD7hLtly5b2AslhJI+rTzqMnj59ap+aHZ9T59ChQ6hVqxbCw8PtN1m3b99GhgwZnKIaX9lxFUIOo7ioUFxMAlu2bMGsWbOEaGYXK1ZMiDOakf+blch+ZJdQLbYQZtYPSyM46zMhngwiQASIABGInwC7we29dSD+Lq2sFxPziMdZVKBAAYwbNw5ZsihbVdFBBBIhwD5979u3L65cucJTsuUaPv30U/ssNR4ZX0B54VphRF+kePYPT/F/Uf5YGjkAC9K3xZ1kWTGs4RVULBP9EoknpAARIAJEQEcC5DDSB65POoy0oFqwYAH69OljT8rCvXr10pKNp6FP0jgKCkgg8M8//4DNJuKLmyplsvW3Vq9ebb+BM+o0WP+1a5Bk2miBwM+hRbGx20YMH0SvFwUwBjKMqicDIaKqaCRAWtIIyolk//77LzIseQOwKbOLHAebaTT21eLXjjjlt2vXrmCzQ9j6Rb5wkJ4804u7du1C06ZNhYsdOHAg1oYbQgKVETBjGmyrF6liooM/hlbHxNemYs2mLMrn89Hx3giRnrxB3XevSXoyft/SJ2n69JFlHUbswZwtgs0+TWvTpg3WrFkjlbB60S1a9FoqWp8srHz58jhx4oTQtkuXLtmdSCySDVI//vij/bxhFr2+fAlRrepA+SPC6x2qfIrWKugAVu3Oj1S+8fzC2+ZLAUPqyZcAW6gtpCX5nR1z1zR+hThmGLG1Z6pXr86TmD1AevJMD7JZRuwTNLYpjONo3rw51q9f7zAT/v3jHtC0DvAkthOTZTwcWhOXxyzHe529uwA26SnhbqSzzhEgPTnHyxup1c/f9EmavB6wrMOIIQwJCcFd5Vts9rDOtjKXeagFSw4jmWR9ryy2jlbMha7ZdPG5c6N3HDPcIKU4sPB2beD3X4UOmRI1HnkmdkWb5jS7SABjMMNwejIYH6qOdgKkJe2stKSM5SxKZA2jQYMG2T8l0lK2GdKQnjzXS8w55Fjrw3FV9pka+8RR06HMjMZc5TP6NV8om6ZFvzhiedknarmzXsfF9QFIn177mp+arutEItKTE7AoaaIESE+JIvJ6AvXzNzmM5HWHpR1G2bNnx++//04OI3l6opJcIBDXelh37tyxOzQdxRlukPpCmYo+62NH9ey/bFe0OYU/wuHvkiAgQDhFhsEIGE5PBuND1dFOgLSknVViKWM5ixwzihLYJS1dunRgN8Vs51dfOEhPnutFttFG/vz5wdbxdByDBw/GzJkzHaa23+vXgakTgSO7hfSvpz2Ntm9nwsejvDfLiPQkdAkZbhIgPbkJ0APZyWGkD2TLOoz+/vtv+0LX7JM0tksam+Uh81ALlmYYySTrW2WxrW3feuutWI1y7OLnOGG4QaqRMrvoxiVH9XAptDCqBm/BuolJ8WZVml3EwRg0YDg9GZQTVStxAqSlxBlpSRGvs+hV5iTNUyOssmpBGIczSTnvS5+lkZ60qEVemvnz59sXwHaUGKC87bl37559yQZHnKZf5RM3FH1NSNowxVYcS1UMJ5fbkCeXd2YZkZ6ELiHDTQKkJzcBeiC7+vmbZhjJA25Zh9Hnn3+O3r1720myAdMRloVWLVhyGMmi6nvlpEiRAi9evBAaxrZWjrkzmqEGqWfPEFX2dfghegp6y2TrEV6iDDYuCVAW6RaaQ4YBCRhKTwbkQ1XSToC0pJ1VfCljOotqPCqOgxP28eQVK1a0v9Ta9eduvPfDKB6PV04jX/osjfQU3b2eCLGXp1mzZgWbbeQ42G5pTFNOHzUrAX/e4tk+xHTMzdQGjYv5YcUc78wyIj3x7qCABAKkJwkQdS5C/fxNDiN5sH3OYcTWJHr8+DEKFiwYL6VDhw6hdu3aCAsLQ/LkycEcOpkzZ443vSsn1IIlh5ErBH0/z7Vr1+JcKyDm7CJGwlCD1KmTQKfo3VXClYWus2W8iv0LA1G0EHmLzKBcQ+nJDMCojvESIC3Fi0bTiZjOosXVpuCNFwXRvn17/Pbbb+jRowdmzZqFwMBAe3kx0wcej8TufptRpUoVTdczeiLSk+d7aNSoUZg6dSq/MHMg3bhxw35/zCO1BLq+Cxzfz1Mqc44wO3IUPs7SE/vnBKCk4jjy9EF68jRx374e6cn4/at+/iaHkbz+MpzD6OzZs3YHjqOJbDezbt262c1GjRrxsON8zG1BT506hbJly6J+/fpo0qQJChUqZP/0jKVnN1+bNm3CokWL7LujsTi2bXm7du1YUOqhFiw5jKSi9ZnCmK6XLl0qtIc5O1OnTi3EMcNIg9TjmYuQZmn0+kUXQ4vg8xY7MG+qd94gxoJFEYkSMJKeEq0sJTA0AdKS691z9u45lFqjfN776mDOoh5lututR48egW1zzu5xYq5zF9NpdKbtXpQMLuEoxtS/pCfPd991ZQ2ivHnzChdmOwezHYSdOuYrG3UsiHY8OfKO8ZuByxVaYf0Xnp+BTHpy9AL9yiBAepJBUd8y1M/f5DCSx9pwDqMhQ4Y4teNHzNkYDodRYojY27ply5bZ1y9KLK0r59WCJYeRKwR9O8/FixdRpEgRoZELFixAr169hDiHYZhBSlmn4M+SNZEl/BdH1bAqvAeq7/8I2UM8//aQV4ICThEwjJ6cqjUlNiIB0pJ7vTLn2DwM+HE81M4iLSU6nEazK32E/hX6asliijSkJ+90U4cOHewvUB1XZy9e2e7B/v5OrEn4/DnQuwdw4oCjGPvv0dCqaBCyEjum+6NiOSfKE0pxzSA9ucaNcsVNgPQUNxcjxaqfv8lhJK9nfM5h9ExZX4UtJHzy5EkcP37cPluJ7QDBPj/Lli0bypUrZ19kmC10HRQUJI9kjJLUgiWHUQw4ZMZ6Y8ymgP/666/8s4OYiIwySN3f+iMyjWwlVG9t9VVos6CGEEeGsQkYRU/GpkS100KAtKSFUsJp2EwjV2YIuZov4dp49yzpyTv8jx49ikqVlDWIVMcPP/yAqlWrqmI0BNni15/OAJbN5okfRqRG3qw/o3x2YOfXnp1lRHri3UABCQRITxIg6lyE+vmbHEbyYBvOYSSvad4tSS1Ychh5ty+MdvXOnTtjxYoVQrWWLFmCrl27CnFqwyiD1KVK76HQP9t51a6H5UHaHw8hQ0bPvjXkFaCASwSMoieXKk+ZDEWAtGSo7jB9ZUhP3ulCNlufrYP1448/8gq4vIPwnd+AuhV4OSyQP90ZPEiSAes/9kfNap67XyA9Cd1AhpsESE9uAvRAdvXzNzmM5AEnh5E8lkJJasGSw0hAY3kj5noUDMhzZSo3W4A9vsMIg9T/Vu9B5kldhCruKzMNb614R4gjw/gEjKAn41OiGmohQFrSQonSaCVAetJKSn66DRs2oEWLFkLBbHOO/PnzC3GJGmyWUYk8QEQYT9otyQpsSFcDRTMBB9cGKJ+68VO6BkhPuuK1XOGkJ+N3ufr5mxxG8vqLHEbyWAolqQVLDiMBjaUNtvB6jhw5YjGIuRZXzAReH6T+/BPPlC1zA/GCV+1pZFKE7zmPdK+l4XEUMAcBr+vJHJiolhoIkJY0QKIkmgmQnjSjkp4wNDQU+fLls28Q4yic7aA2efJkh6n9t11L4MJRnn5vaEO0Dllgt1eN9keDOp7xGJGeeBdQQAIB0pMEiDoXoX7+JoeRPNjkMJLHUihJLVhyGAloLG2MGzcO48ePFxg8ffoUKVOmFOJiGl4dpI4qU9S7i+sWsfrtqT4fdRY0jVlVsk1AwKt6MgEfqqJ2AqQl7awoZeIESE+JM9IzxezZszFw4EB+CbZBzB9//BHn7q08UVyBb9cC4wfzM+FRfiiQ/iweJkmPfOmAY+sDYPPAxqqkJ94FFJBAgPQkAaLORaifv8lhJA82OYzksRRKUguWHEYCGssaT548sS+8/u+//3IGU6dOxYgRI7gdX8Brg9SZ08C7jWNVa094M1Q4ORdp0tDOaLHgmCDCa3oyARuqonMESEvO8aLUCRMgPSXMR++z7N6VbRATyT4re3UsX74cnTp1cpjafp8+ASoWBiIjePopUR9jeuaX5awc5Y+GdfWfZUR64vgpIIEA6UkCRJ2LUD9/k8NIHmxyGMljKZSkFiw5jAQ0ljXYwtbdu3fn7Wfb1d69exdZsmThcfEFvDZItVdmFp2PXgST1e9eeCZs63sIPfqlja+6FG9wAl7Tk8G5UPWcJ0Bacp4Z5YifAOkpfjaeOtOrVy8sXLiQX65EiRI4ffq0su6Qkw6e4UOA7Wt4OdfDcqN08AHF9kPhjMAP3+q/lhHpieOngAQCpCcJEHUuQv38TQ4jebDJYSSPpVCSWrDkMBLQWNKIiIhA4cKFcfXqVd7+3r17Y/78+dxOKOCVQeqnC0Db+rGq1T71VizeVwqpEv6KLlY+ijAOAa/oyTjNp5pIJEBakgiTigLpyfsiOHXqFMqWLStU5MiRI6hUqZIQl6hx+hTQsYmQrGGKrfgxVTF73Lpx/nirhpNOKKG0xA3SU+KMKIV2AqQn7ay8lVL9/E0OI3m9QA4jeSyFktSCJYeRgMaSxq5du1C/vuh8uXDhAooWLaqJh8cHqd9uA/Uqxqpb4bQn0KdbVvTu5oHFB2JdnSJkEfC4nmRVnMoxHAHSkuG6xNQVIj15v/vYJhyVK1fG0aPRi1Z37twZy5Ytc65ySjmoqdxH/O83nm9zaBt0Dplut0tnA/auDoCfjl+2k544egpIIEB6kgBR5yLUz9/kMJIHmxxG8lgKJakFSw4jAY0ljSZNmmDLli287cx5tGPHDm4nFvDoIPXLNaDpm7GqNDlqAuZl64irmwKUBTBjnaYIExHwqJ5MxIWq6jwB0pLzzChH/ARIT/Gz8eSZtWvXom3btvySfopXh+3yGhISwuM0Bb78AvhsnJB0kP98LM/QyB63dYo/qlTUb5YR6UlAT4abBEhPbgL0QHb18zc5jOQBJ4eRPJZCSWrBksNIQGM549dff7VvVatuOJtxVLduXXVUgmGPDlLjPgC+WyrU53FEchTIdBaDW6fEsH40u0iAY0LDo3oyIR+qsnYCpCXtrChl4gRIT4kz8kSKZ8+e2Z1Djx494pebNm0ahg8fzm1NgQf3geollaTKbKNXB1tOe7D/AqzI0BBVcwGbl+k3y4j05KBOvzIIkJ5kUNS3DPXzNzmM5LEmh5E8lkJJasGSw0hAYznj448/xkcffcTbnSNHDvz3v/9FkiRJeFxiAY8OUo1qAzcuCVWaHzEU47L1w5X1NmQI0nH+uHBVMvQi4FE96dUIKtcQBEhLhugGn6kE6ck4XTl+/HiMGzeOVyhr1qxg97NJkyblcZoCH4wGNqwQkjKnUX/bIqwKqoe9n/mjTEl9ZhmRngTsZLhJgPTkJkAPZFc/f5PDSB5wchjJYymUpBYsOYwENJYyXrx4gddeew0PHjzg7Z4xYwaGDFF2D3Hi8NggpdQXZfIpLwOj3wayauZMfwGdGqbDx6NodpET3WbYpB7Tk2EJUMVkESAtySJJ5TACpCfj6ODWzVvIlTuXUKHdu3ejTp06QlyiRlgYMGaksGMayxMa5YfyaY6gQIkQrFkYkGgxriQgPblCjfLER4D0FB8Z48Srn7/JYSSvX8hhJI+lUJJasOQwEtBYyti0aROaNWvG2+zqOgAeG6TOngXeebm2gKPSpVMfwc3k2XFhtQ0hwTS7yMHFzL8e05OZIVHdNREgLWnCRIk0EiA9aQTloWRNmzbF5s2b+dU6dOiAlStXcltzgL2EmqEsdr18jpBl4KtP0459YUOB/PLvL0hPAm4y3CRAenIToAeyq5+/yWEkDzg5jOSxFEpSC5YcRgIaSxlscWu2XpHjaN++PVatWuUwNf96bJD6fD4wbzKv19WwAqgQvAedq/jhs4k0u4iDMXnAY3oyOSeqfuIESEuJM6IU2gmQnrSz8kRK5ixiTiPH4e/vj3v37iFz5syOKO2/zGlUuypw7wbP43AYdavuhxnj5d9jkJ44agpIIEB6kgBR5yLUz9/kMJIHmxxG8lgKJakFSw4jAY1ljGvXrqFAgQJCe/ft24eaNWsKcVoMjw1S7VoCF6K30l0e3guDso3EqaU25M0j/+2flrZTGvkEPKYn+VWnEg1GgLRksA4xeXVIT8bqwOfPnyNLlix48uQJr9jChQvRs2dPbjsVqFsduPNfnqWfbSFWBtWHTbm9uPydDZkyyr3PID1x1BSQQID0JAGizkWon7/JYSQPNjmM5LEUSlILlhxGAhrLGB988AEmTpzI25snTx4wJ5LN5vxbNI8MUsqNYVTZ1+EXxZajfHl0TLIS/tWrYfls5+vsKIN+jUfAI3oyXrOpRjoQIC3pANXCRZKejNf5I0eOBNshzXGUKFECZ86cAfvE3umjZiXgz1s824PwtBgUuADb0lbBB638MLiP3HsN0hNHTQEJBEhPEiDqXIT6+ZscRvJgk8NIHkuhJLVgyWEkoLGEwQaV4OBgPHz4kLd31qxZGDBgALedCXhkkPrxCNCjNa9WuLIg5WsZLmHTZ6lQvow+O5jwi1HAowQ8oiePtogu5i0CpCVvkffN65KejNevF85fQPESxYWKnT59GqVKlRLiNBmdOwAnD8ZKOsh/PjZkaYQr2wKQInms0y5HkJ5cRkcZ4yBAeooDisGi1M/f5DCS1znkMJLHUihJLVhyGAloLGHs2LEDDRs25G1lb+Lu3r0Lti2tK4fug1SkMquocV3gxiVevXOhpdG/xAYc+jZAeZPIoyngAwR015MPMKImaCNAWtLGiVJpI0B60sbJk6milLWHypUrh1OnTvHLsp1e2Y6vTh9XrgDt31a2w3smZL0Rlgulgg9hQT9/tGsh7wUV6UnATIabBEhPbgL0QHb18zc5jOQBJ4eRPJZCSWrBksNIQGMJo23btli7di1va+vWrQWbn9AY0H2Q2rAO+ECc/TQ/YiiyTR+A5o3l3bxpbC4l05mA7nrSuf5UvHEIkJaM0xe+UBPSkzF78csvv0SPHj145QIDA3H//n2wX6ePB/eBkcOAo3uFrMXSHEOyLNlwfEMAlLW1pRykJykYqZBXBEhPxpeC+vmbHEby+oscRvJYCiWpBUsOIwGNzxt//PGH/XM09lbOcWzbtk2YceSI1/qr6yDFZhexnUv+uMmr8zQyKepnOYrvd2dFsmQ8mgI+QkBXPfkII2qGNgKkJW2cKJU2AqQnbZw8nerBgwf2xa8j2f3Cq2P9+vVo3ry5w3Tul5VTrhDwPHox7Q/8pmNexjbYMMEfb1aV4zEiPTnXLZQ6YQKkp4T5GOGs+vmbHEbyeoQcRvJYCiWpBUsOIwGNzxsLFixAnz59eDuDgoLsn6Mlc8PzousgFcfsol4BX6JgrzoY8L7cBSg5FAp4lYCuevJqy+jiniZAWvI0cd++HunJuP3bpUsXLF++nFewWbNm2LBhA7edDgwbDOyInol9PLQy6oWsRn3Fj7R6QYDTxcWVgfQUFxWKc5UA6clVcp7Lp37+JoeRPO7kMJLHUihJLVhyGAlofNpgs4pKliyJ8+fP83aOHj0akyZN4rYrAd0Gqf8cBt5vB6hmQ10Lex2Vgvfg8roA6VvcutJ2yiOfgG56kl9VKtHgBEhLBu8gk1WP9GTcDtuzZw/q1lXWOlQd9+7dc3ltRuzdAwzswktjc5dKKJ+l/ZYsG86vtCFHdvcXTyQ9cbwUkECA9CQBos5FqJ+/yWEkDzY5jOSxFEpSC5YcRgIanzbOnTtndxipG3nhwgUULVpUHeV0WJdBSrnRQ4MqQOgLoT79bAuRpEkDfDqBZhcJYHzI0EVPPsSHmqKdAGlJOytKmTgB0lPijLyVIjQ0FNmyZRN2f124cCF69uzpWpWU3WRRXplOFBZ9D/JXRBoMTPE5CneqipED3b8HIT251jWUK24CpKe4uRgpVv38TQ4jeT1DDiN5LIWS1IIlh5GAxqeNcePGYfz48byNZcuWxfHjx5Vdxtx7UyZ9kAoPB9oqaw9cPs3rygJrwjqjV/A4HFamgxcp5F6dhYLJMBQB6XoyVOuoMp4kQFryJG3fvxbpydh9PGrUKEydOpVXku2eduzYMdfvcT4YDWxYwctzBCYHzMCQE+3cXkOR9OQgSr8yCJCeZFDUtwz18zc5jOSxJoeRPJZCSWrBksNIQOOzBlsMMnfu3Lh9+zZv49y5c9G3b19uuxqQPkjNmQUs+kSozs7QpmgfPAulg/2wd3WAcgMonCbDhwhI15MPsaGmOEeAtOQcL0qdMAHSU8J8vH32zJkzKF26tFCNS5cu4Y033hDiNBt//QU0ehN4rPyqjkcRgfjh06to3MC9xa9JTyqoFHSbAOnJbYS6F6B+/iaHkTzc5DCSx1IoSS1YchgJaHzWOHHiBMqXLy+07+aNm8iZK6cQ54ohdZBStsLFmyWFdYt+Cw9Gucz78MIWiEUD/NG6mXs3aa60kfJ4joBUPXmu2nQlAxIgLRmwU0xcJdKTsTuPvRgrVqwYLl68yCs6YcIEjB07lttOB5jTaKCyUcgZZU3FVwfbqbVtuV+wbYV7i1+TnhxE6VcGAdKTDIr6lqF+/iaHkTzW5DCSx1IoSS1YchgJaHzWYItbT5kyhbevevXqOHjwILfdCUgdpOYqs4sWRs8uCovyQ4OUO3AqZSGkUPxE/90WgMBAd2pLeY1OQKqejN5Yqp+uBEhLuuK1XOGkJ+N3+axZszBo0CBe0Rw5cuD69euw2dxYcyjGfcnJ0IqoE7IGx76woUB+16c7k554N1FAAgHSkwSIOhehfv4mh5E82OQwksdSKEktWHIYCWh80ghX1gTKnj072B8nx7F48WL06NHDYbr1K22QUhatRKViwPMnvD7fhnVEz+AJdrtPbT9MHOPGTR8vlQJGJiBNT0ZuJNXNIwRISx7BbJmLkJ6M39W3bt5Crty5hIoePnwYVaoom2i4enTtCBzfx3N/Gd4Pw7INhbv3JKQnjpQCEgiQniRA1LkI9fM3OYzkwSaHkTyWQklqwZLDSEDjk8aRI0di3SzduXMHISEhUtorbZDavAkYrUz9Vh2VUx3ApRR57DFHF9tQ8HXX3+apiqWggQlI05OB20hV8wwB0pJnOFvlKqQnc/R0nTp1sHfvXl7ZwYMHY+bMmdx2OtCuJXDhKM+2JLwvhmYbhmTKrOcb2wOQIgU/5VSA9OQULkqcCAHSUyKADHBa/fxNDiN5HUIOI3kshZLUgiWHkYDGJ42hQ4cKN0t169bFrl27pLVV2iDV9V3lLd5+Xq+joVXRIGSl3S6r+Lb2rHJvvQBeMAUMTUCangzdSqqcJwiQljxB2TrXID2Zo69XrFiBzp0788oGBQXh3r17SJo0KY9zKvDJNGD5HJ7lQXhaFMh6FpF+NqwY7u/y4tekJ46UAhIIkJ4kQNS5CPXzNzmM5MEmh5E8lkJJasGSw0hA43NGqPKZV7Zs2fDw4UPetmXLlgk3U/yEiwFpg1T5IsDTv3kt+toWYVVQPbv9xSB/tGxCi11zOD4ckKYnH2ZETdNGgLSkjROl0kaA9KSNk7dTqe9xHXVhazaytRtdOpQ1kPB2VSFrf9vn+DqoAWrlB777wrWXWaQnASkZbhIgPbkJ0APZ1X+byGEkDzg5jOSxFEpSC5YcRgIanzN++OGHWDdJsv9ISRmknijrFlUoKPCvkOoQrqbIZV/s+lc3pn0LhZJheAJS9GT4VlIFPUGAtOQJyta5BunJPH3duHFjbN26lVd44MCB+Oyzz7jtdKDF28CVMzxbqLIhR5dkq7EjbSVc/MaG4GzOfy5PeuI4KSCBAOlJAkSdi1A/f8t+FtO56oYunhxGOnWPWrDkMNIJskGKHTVqFKZOncpr07BhQ2zbto3bMgJSBqmfLgBt6/PqhCs3Y1ky/VeZ8h2AHjX8MH0cLXbN4fh4QIqefJwRNU8bAdKSNk6UShsB0pM2TkZItXLlSrz7rvKZ+6sjXbp09o0/XP4sbbvifBr+vqM4+++zyACUSn8MfbtkRt8ezt+jkJ4EnGS4SYD05CZAD2RXP3+Tw0gecHIYyWMplKQWLDmMBDQ+ZURGRiJv3ry4efMmb9eXX36Jbt26cVtGQMog9b2yQOWAzrw6v4UHo1i2l4tM7vnUH2VL0edoHI6PB6ToyccZUfO0ESAtaeNEqbQRID1p42SEVPfv30eWLFkQFRXFq7N//368+eab3HYqwMoZMRTYvkbI9knkB/gmf3ec2hQAfydvU0hPAkoy3CRAenIToAeyq5+/yWEkDzg5jOSxFEpSC5YcRgIanzIuXLiA4sWLC21izqOcOXMKce4aUgaptd8AHys3Y6+Os6FlUDNkPbKnBM5vdf5GzFEO/ZqPgBQ9ma/ZVGMdCJCWdIBq4SJJT+bq/KZNm2Lz5s280v369cOcOdGLV/MTWgPKSzj0fg84vJPnOBZaBfVDVuH7z/xRuqRzHiPSE8dIAQkESE8SIOpchPr5mxxG8mCTw0geS6EktWDJYSSg8SljxowZGDZsGG9T2bJlceLECW7LCkgZpObPBRZEfzr3fWgDtAr5HB+29sOg3s5P9ZbVNirH8wSk6Mnz1aYrGpAAacmAnWLiKpGezNV5q1evRocOHXilU6dODTbzKFmyZDzO6cDBA0Cfd3g2tpZR/qDzaFMrndOfzpOeOEYKSCBAepIAUeci1M/f5DCSB5scRvJYCiWpBUsOIwGNTxnly5cXHETTp08XHEiyGitlkBr/IfDtEl6lNWGd0St4PM59ZUPOHM4vJskLooDpCEjRk+laTRXWgwBpSQ+q1i2T9GSuvv/rr7+QKVMm4bO077//Hm+99ZbrDXn69OUGHapP3eZFDMPE4L64sSMAKZJrL5r0pJ0VpUycAOkpcUbeTqF+/iaHkbzeIIeRPJZCSWrBksNIQOMzxu3bt2N9enb+3HkUK15MehulDFLtWgIXXq5ZxCo4N2I4dpXrg+1fubZdrfRGUoEeIyBFTx6rLV3IyARIS0buHfPVjfRkvj5r3rw5Nm7cyCvep08fzJs3j9suBYYPEdYyehyRHAUyncWyj1KhXi3tn6WRnlyiT5niIUB6igeMgaLVz9/kMJLXMeQwksdSKEktWHIYCWh8xli2bBm6du3K25MjRw7cuHFDWZRR+80Mz5xIwO1B6pjiKOqmOIxUR7ckK1Drg5po10J+fVWXoaABCbitJwO2iarkHQKkJe9w99Wrkp7M17Nr1qxBu3bteMXZbmnsHjhJkiQ8zunA9evA21WFbFOixuNmgy5YNEP7J/SkJwEhGW4SID25CdAD2dXP3+QwkgecHEbyWAolqQVLDiMBjc8YTZo0wZYtW3h7Ro4ciSlTpnBbZsCtQeqff4C6VYAnD3mV7G/rsvyEK1sDkTYNj6aARQi4pSeLMKJmaiNAWtLGiVJpI0B60sbJSKkePHhg/yxNXacjR46gUqVK6ijnwz2V3Wb/s4vn+zG0Oppk/wo3twUgpbJZh5aD9KSFEqXRSoD0pJWU99Kpn7/JYSSvH8hhJI+lUJJasOQwEtD4hPHo0SNkyJABkWxHj1fHoUOHUK1aNYcp9dflQYqtATCoH7A3ero4q9hHmIZbtdph+Wztb+qkNogK8yoBl/Xk1VrTxY1IgLRkxF4xb51IT+bsu3r16mH37t288mPHjsWECRO47VKgbQvgp2M867dhHdEzeAK+GuGPt+trmxlNeuL4KCCBAOlJAkSdi1A/f5PDSB5schjJYymUpBYsOYwEND5hbN26FY0bN+ZtCQwMxN9//42kSZPyOJkBlwepvXuAgV2EqhwJrYFGIcuxfLgNTRpou+kSCiDD9ARc1pPpW04NkE2AtCSbqLXLIz2Zs/8XL16Mnj178srnyZMHv/zyi+uf6D9/DpTJr5SnvPR6dXRO8jU2p6uGxsX8sGKOtpddpCcHPfqVQYD0JIOivmWon7/JYSSPNTmM5LEUSlILlhxGAhqfMPr374+5c5Vt6l8dXbp0wdKlSx2m9F+XBil2w/VWBeCfB7w+7FO0skFH8FeyjLixNQCpU/FTFLAQAZf0ZCE+1FTtBEhL2llRysQJkJ4SZ2TEFDdv3kTu3LmFqv38888oXLiwEKfZUD5zQ/XiQvICaU/jf0kzgrmKft0SoOlzetKTgJAMNwmQntwE6IHs6udvchjJA04OI3kshZLUgiWHkYDG9Ab7DC0kJAR//PEHbwtb9LFNmzbclh1waZCaMwtY9IlQlb62RVgVVA9NivvR52gCGWsZLunJWoiotRoJkJY0gqJkmgiQnjRhMmSi0qVL48yZM7xuM2fOxODBg7ntVCAiAiiWU8kSPcOoZuAenE1ZwF7Ml4P90aJx4jOkSU9OUafEiRAgPSUCyACn1c/f5DCS1yHkMJLHUihJLVhyGAloTG/89NNPKFasmNCOu3fvIlu2bEKcTMPpQUqpD+qUV+61otdYOhpaFQ1CvlaqpUznHu6PxvQ5mswuMlVZTuvJVK2jynqSAGnJk7R9/1qkJ/P28fTp0zFixAjegPLly+PYseg1iPgJrYGKyn3W4794ascnaSyibkFgzcIAfi6+AOkpPjIU7woB0pMr1DybR/38TQ4jeezJYSSPpVCSWrDkMBLQmN6YPXs2Bg4cyNtRrlw5HD9+nNt6BJwepEYrN22bV/KqhEf5oWrqA7iSIjdsfqDP0TgZawac1pM1MVGrNRAgLWmAREk0EyA9aUZluIQXzl9A8RLiZ2Ru3f82awhcO8fbOTVqHKZlfrkmI5tbdEP5LC1NGn46zgDpKU4sFOkiAdKTi+A8mE39/E0OI3ngyWEkj6VQklqwbg2YQqlkGIFAnTp1sHfvXl6VyZMnY9SoUdzWI+DUIHXrFtCgslKN6KncK8Lfx8BsL+vYVPkcbRntjqZHN5mmTKf0ZJpWUUW9QYC05A3qvntN0pN5+5Z9rs/WMbp9+zZvxJIlS9C1a1duOxXo/R5waLuQZXVYVwzMOgJh/sk17ZZGehLwkeEmAdKTmwA9kF39/E0OI3nAyWEkj6VQklqw5DAS0JjaYDuhZciQAVFsu/pXB5tyzaZe63k4NUgNGQDsWser8ywyAEWCTuPvJOnscfQ5Gkdj2YBTerIsJWq4FgKkJS2UKI1WAqQnraSMmY69PJs6dSqvXKNGjcB2lXXpmDwBWLUwVtYpUR9jeuZOaFvWD59/kvBuaaSnWPgowg0CpCc34Hkoq/r5mxxG8qCTw0geS6EktWDJYSSgMbXBbnwaN27M25AyZUo8fPgQSZMm5XF6BDQPUkpdULWoUIUFEYMxJqviRFIONo37JtsdLbXdpH8sSkCznizKh5qtnQBpSTsrSpk4AdJT4oyMnOLw4cOoVq0ar6Kfnx8eKDueBQUF8TjNgfPK52jtlc/SYhyHQ2uiccgyJFNuaG7vClDuv2IkUJmkJxUMCrpNgPTkNkLdC1A/f5PDSB5uchjJYymUpBYsOYwENKY2+vXrh3nz5vE2dOnSBUuXLuW2XgHNg9TpU0DHJrwaYYqLKE/6C3ga8NJDVCs/8N0XiS8UyQuggE8S0Kwnn2w9NUomAdKSTJpUFunJ3BoIDQ1FxowZ8eTJE96QTZs2o0mT6Bdt/ISWwJnTwLti3uthuVE6+KA995Yp/qhakb0Ki/sgPcXNhWJdI0B6co2bJ3Opn7/JYSSPPDmM5LEUSlILlhxGAhrTGuz7/ODgYLA/QI5jzZo1aNOmjcPU7VfzILXve6B/J16P3yOyo0jWI9z+7D0/dG6f8BRunpgCPktAs558lgA1TBYB0pIsklQOI0B6Mr8OunfvDrZ2kePo3bs35s+f7zCd/z17FninEc8XqmzikT/oPB4HpEWf2n6YOCb+exrSE8dGAQkESE8SIOpchPr5mxxG8mCTw0geS6EktWDJYSSgMa3x888/o2hR8XOvu8r29dmyZdO9TZoHqfXK2kUfvvz8jFXqp9BiqBYSvX7A+ZU25MiubJNGh6UJaNaTpSlR47UQIC1poURptBIgPWklZdx03333HVq3bs0rmClTJty7dw82W/yOHZ44rsCjv4HKRYQz34Z1RM/gCciSAri0PQD+8UwyIj0J2MhwkwDpyU2AHsiufv4mh5E84OQwksdSKEktWHIYCWhMayxcuBC9evXi9S9btixOnDjBbT0DmgepLxcDn43nVXF8688iCipLCBzdQJ+jcTgWDmjWk4UZUdO1ESAtaeNEqbQRID1p42TkVOr7X0c9zyqzhEqUKOEwnf8d2BfYu5Hni1RCNVLuw0+B+XB4gQ1FCsX9Ioz0xJFRQAIB0pMEiDoXof77Qw4jebDJYSSPpVCSWrDkMBLQmNZo0aIFNmzYwOs/btw4fPTRR9zWM6B5kJqgOIvWKE6jV8f6sA7oHjzZbo1s5ocRA1x8w+cokH59goBmPflEa6kRehIgLelJ13plk558o8+rVKmCI0eiP4f/9NNPMWjQINcbx5YCqK3sRhsRxstYF/YOegRPwkdt/DCwV9z3NqQnjosCEgiQniRA1LkI9fM3OYzkwSaHkTyWQklqwZLDSEBjSuPFixdIkyYNwsKib1b279+PN9980yPt0TxI9eoB/LCD12luxHB8mLWP3d43y4ZSJeJ+C8czUMASBDTryRI0qJHuECAtuUOP8sYkQHqKScSc9ieffILhw4fzyteoUQMHDhzgtkuB+XOBBVN51v+L8sfrQefwRq602LUy7tnTpCeOiwISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQGNK4+jRo6hUqRKvu7/ywfw///yDVKlS8Tg9A5oHqcb1gF9/4lXZHtoc74R8hjTKvdT13QHKGgL8FAUsTECznizMiJqujQBpSRsnSqWNAOlJGyejpzp16hTYZ/vq48GDB8iQIYM6yrmwkh81lM/aoqJ4vmlRH2Fa5q64vjkA6dLyaB4gPXEUFJBAgPQkAaLORaifv8lhJA82OYzksRRKUguWHEYCGlMaM2bMwLBhw3jd69Wrh507d3Jb74DmQapYLmHKNqtX+ky30KmyH2ZNIm+R3v1klvI168ksDaJ6eo0Aaclr6H3ywqQn3+jW8PBwZMyY0f5izdGiXbt2oW7dug7Ttd+hA4Gd3/G8V0ILomLIbqwa448GtWOvfE164qgoIIEA6UkCRJ2LUD9/k8NIHmxyGMljKZSkFiw5jAQ0pjTefvttbNu2jdedOZCGDBnCbb0DmgepwiGxqsIcRsuH+6NJg9g3U7ESU4QlCGjWkyVoUCPdIUBacoce5Y1JgPQUk4h57XfeeQerVq3iDWBrPrK1H906Tp8COjYRiiiR5ijq1A3B9HGxX4qRngRUZLhJgPTkJkAPZFc/f5PDSB5wchjJYymUpBYsOYwENKYz2ADBPj1jb8wcB1vMUf2JmiNer1/Ng1QMh9HJ0IqoE7IG176zIVMmWr9Ir/4xW7ma9WS2hlF9PU6AtORx5D59QdKT73Tv4sWL0bNnT96gqlWr4ocffuC2S4GICKBcIeDFU559IiZiVY53cWlHAPxi3OaQnjgmCkggQHqSAFHnItTP3+QwkgebHEbyWAolqQVLDiMBjemMmN/is/WLHj9+jJQpU3qsLZoGKfZdf+WSwD/3eb2mRo3DtkJd8J91cS8IyRNSwFIENOnJUkSosa4SIC25So7yxUWA9BQXFXPGnT9/HiVKKGsOvTr8FG/Oo0eP7BuIOOJc+h0zEtj0Nc96JLQGGoWswMmlNuTLI3qMSE8cEwUkECA9SYCocxHq529yGMmDTQ4jeSyFktSCJYeRgMZ0xvz589G3b19eb7YzGtshzZOHpkHqwnmgXQOhWpVSHUSD1nkwdkjsqdpCQjIsRUCTnixFhBrrKgHSkqvkKF9cBEhPcVExZxzbVZbNzg4NDeUNYDulsR3T3Dq+3wsM6MyLeBFpw2uZrmB6z2To0kG81yE9cUwUkECA9CQBos5FqJ+/yWEkDzY5jOSxFEpSC5YcRgIa0xlt27bF2rVreb0nTJiAsWPHctsTAU2D1OgRwOaVvDq3wl5DieDD2DLZhqqVaP0iDoYC0KQn4kQENBAgLWmAREk0EyA9aUZlioTNmzfHxo0beV2nTp2KESOUexV3DmWGNyq+IZTQMtl6JK1QBqsXiLOpSU8CJjLcJEB6chOgB7Krn7/JYSQPODmM5LEUSlILlhxGAhpTGRHK9/Jp06bFv//+y+u9d+9e1KpVi9ueCCQ6SD1VvuevWBiIjF5naXrUh5ieuRtuK9/1BwZ6opZ0DbMQSFRPZmkI1dPrBEhLXu8Cn6oA6cmnuhOzZ8/GwIHKzmavDrZLGtstze3jrcrAHzd5MQP9F2B1xob4fU8AkiTh0fRyJBoFhSQQoL9PEiDqXIT6+ZscRvJgk8NIHkuhJLVgyWEkoDGVcfHiRRQpUkSo88OHD5E+fXohTm8j0UFqy2ZgVG9ejfAoP7yR/jSKFMyAjUvEN248EQUsSyBRPVmWDDXcWQKkJWeJUfqECJCeEqJjvnPHjx9HhQoVeMVtNpt9DchAd99ilS0EPPuHl9s+6RrsTFsRB+baUKJo9DpGpCeOiAISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQGMqY/ny5ejSpQuvc9myZXHixAlueyqQ6CC1cAEwdxKvzqnQ8qgd8i0mveuH3t3Eb/p5IgpYlkCierIsGWq4swRIS84So/QJESA9JUTHfOeeP3+O1KlTg83WdhxHjx4VnEiOeM2/bMfa4jmF5NVS7sNPgfkwtZMfenaJvuchPQmYyHCTAOnJTYAeyK5+/iaHkTzg5DCSx1IoSS1YchgJaExldO/eHUuWLOF1HjlyJKZMmcJtTwUSHaQ2bwJG9+HVuRmWEyWDf8D+OTaULBb9to0noIClCSSqJ0vTocY7Q4C05AwtSpsYAdJTYoTMd75evXrYvXs3r/isWbMwYMAAbjsd+PNPoGYpIVvO9BfwOCAtGipf5q+cHz2rmvQkYCLDTQKkJzcBeiC7+vmbw0SPIAAAPatJREFUHEbygJPDSB5LoSS1YMlhJKAxjRGlbFOfPXt23L17l9d5y5YtePvtt7ntqUCig9TPPwFt6vHqRCifpGXP9Atuf59C+J6fJ6CApQkkqidL06HGO0OAtOQMLUqbGAHSU2KEzHd+2rRpYC/bHEezZs2wYcMGh+n876+/Ao2rCfkyZ7iKMP/kSKHs7/Hb3gAoX77ZD9KTgIkMNwmQntwE6IHs6udvchjJA04OI3kshZLUgiWHkYDGNMZvv/2GHDlyCPW9c+cOQkJChDhPGIkOUmzR6/IFhKoMKnQQn32XX4gjgwgwAonqiTARAY0ESEsaQVEyTQRIT5owmSrRoUOHUKNGDV7npEmT4smTJ2C/Lh3KZ24ow+5tonj2MX4zsCBjK7v9n89tKPzGy5nVpCeOiAISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQGMaY9u2bcJsotdeew2sL/38PP+JV6KDlLI4N1rXEdgubf8juo4Rv/MXEpBhWQKJ6smyZKjhzhIgLTlLjNInRID0lBAdc557/Pgx0qVLBzZr23GcPXsWJUqUcJjO/9Z/E7h9Tcg3N2I4PszaBzO7+6HrOy+nGJGeBERkuEmA9OQmQA9kVz9/k8NIHnByGMljKZSkFiw5jAQ0pjHGjRuH8ePH8/qyxa+XLl3KbU8GEhukIiZOgu0bZeHrV8dv4cG4uewYqlaKXvzRcY5+iUBieiJCREArAdKSVlKUTgsB0pMWSuZLU61aNRw+fJhXnK0N2bVrV247HfhgNLBhhZAtUrGKpTmOcuWzYekschgJcMiQQoD+PknBqGsh6udvchjJQ00OI3kshZLUgiWHkYDGNEadOnWwd+9eXt/PP/8c77//Prc9GUhskHpWuwEC757nVVoQMRTvnhqE1Kl4FAWIACeQmJ54QgoQgUQIkJYSAUSnnSJAenIKl2kSjxkzBpMnT+b17dGjBxYvXsxtpwNXrwItawOR0buvsTJmR47EzJBeuLknAP7KekakJ6fJUoYECJCeEoBjkFPq529yGMnrFHIYyWMplKQWLDmMBDSmMEJDQ5EyZUqEs+1bXx3Hjh1D+fLlHaZHfxMcpCIjEV40FwIQfeM0NvhbTNxb2aN1pIuZh0CCejJPM6imBiBAWjJAJ/hQFUhPPtSZqqZs2rQJbLFrx5E7d278qixe7dYn/rdvA/UrOoq0/94Lz4TCWU/g9FdJkDunHzmMBDpkuEuA/j65S1D//Ornb3IYyeNNDiN5LIWS1IIlh5GAxhTGhfMXULxEcV5XdlPDFmlkTiRvHAkOUr8pN031xJumma3OYci4TN6oKl3TBAQS1JMJ6k9VNA4B0pJx+sIXakJ68oVejN2GWzdvIVfuXMKJe/fuIWvWrEKc08aVy0CLWkK2moF7MGD8G2jSwJ8cRgIZMtwlQH+f3CWof3718zc5jOTxJoeRPJZCSWrBksNIQGMKY8WKFejcuTOva8WKFfHjjz9y29OBhAapqH374Ne/I6/Sw4hUOD73MurXVuZj00EE4iCQkJ7iSE5RRCBeAqSleNHQCRcIkJ5cgGaCLGzB6yxZsuD+/fu8trt27ULdunW57VKALaRduSTwT3S53QOWI6R9TYwfYSOHkUtQKVN8BOjvU3xkjBOvfv4mh5G8fiGHkTyWQklqwZLDSEBjCqNv376YP38+r+uwYcMwffp0bns6EO8gpXyOFlG+OGzPHvIqHQ+tjOyH1iIk2O//2TsPOCmKLIx/m8hJksBKkAwiLpIXkYyIoIAEEyISlCBZgqQjI0FyzklBgoKBHCW7SkbJiMrpoQgqaeNNjU5t1+7OTPdMs9MzfH2/c+pVvaqt/tejp+ub7iqZxwQJaAk4jSetE9MkoIMAY0kHJLroJsB40o3K7xxfe+01rFixQvZ7xIgRGDRokLQ9TrR4ATgdJasPwTgcLtcKm5aHUjCSVJgwgwCvT2ZQvL9taOffFIzMY03ByDyWSkvagKVgpKDxC6NcuXI4evSo7OuqVavQsmVLaad2wumX1LgxwJLpSndWJryNVqcG29YGULJpkIAk4DSepAcTJKCPAGNJHyd66SPAeNLHyR+9xI9w4sc4x9GgQQNs3LjRYXr+2a0zsH29rD8zrheG5O2Oq5tDkZBwTz4dHhkZibRp00o/JkjAKAFen4wSS31/7fybgpF5/CkYmcdSaUkbsBSMFDSWN/7++29kzpxZ6efp06dRqlQpJS81DadfUhVtfbr9p9KVWUXmo9OGZ5U8GiSgJeA0nrROTJOADgKMJR2Q6KKbAONJNyq/czxw4ACEaOM4wsLCIO630qRJ48jy7HP0CGDFbFl3bcyraJ9vNPbMCEHxotEUjCQZJrwlwOuTtwTvf33t/JuCkXm8KRiZx1JpSRuwFIwUNJY3vvnmG1SoUEH2MzQ0FLdu3fL+pka2aDyR4peU7XU0PJ5faexyTEGs77YT3bvyVzQFDA2FQIrxpHjQIAF9BBhL+jjRSx8BxpM+Tv7oJcShLFmy2J76sa079O9x7NgxlC1b1mF69jl9KjDrfVl3Z/QzaBY+F9M6BaNFkxgKRpIME94S4PXJW4L3v752/k3ByDzeFIzMY6m0pA1YCkYKGssbSRe8rlGjBnbt2uXTfqf4JWXbtQ1VSir9Kp31a0wfmwe1n+aC1woYGgqBFONJ8aBBAvoIMJb0caKXPgKMJ32c/NWrfPny+Pbbb2X3TVkf8p1OwI4Nss0VMe3QNd8QvPFUEMYOjqVgJMkw4S0BXp+8JXj/62vn3xSMzONNwcg8lkpL2oClYKSgsbzRq1cvTJo0SfbTlBsa2ZpniRS/pK5eBepVVBrMk/17nFiXCblycQEjBQwNhUCK8aR40CABfQQYS/o40UsfAcaTPk7+6lWmTBmcOnVK6b72iSOlQK8hdkm78T/p/V7QRMzK2RzFsgFfrYqjYCTJMOEtAV6fvCV4/+tr598UjMzjTcHIPJZKS9qApWCkoLG8Ua1aNXmDITq7fPlyvPrqqz7td4pfUj/8ADRMXA9AdLBB7oPYtFN9Tc2nHecftySBFOPJkj1lp6xOgLFk9RHyr/4xnvxrvIz29qGHHsKNGzeUavG21+uDPN2lIzYWeKKg0t7ZmOKonG8Lgmz/u/BpHI4e2W8v56LXCiYaHhDg9ckDaKlcRTv/pmBkHnwKRuaxVFrSBiwFIwWNpQ3xZZAhQwaIGxjHIXZLe+KJJxymTz5T/JKKicHdiJJIh7uyT5/lHYjG22w7hvAgARcEUownF/4sIgFnBBhLzsgw3xMCjCdPqPlPnWnTpqFbt25Kh8UramJnWo8OsR5Sg5rAT+eV6s3TrsX2LBWwbVIs/rxxwF5GwUhBRMMDArw+eQAtlato598UjMyDT8HIPJZKS9qApWCkoLG0IR6VFo9MOw7xq5dYqFGISL48nH1JHS3XHhHRidvSnitgewx74xRfdpV/2w8IOIsnP+g6u2gxAowliw2In3eH8eTnA+im+7dv30bGjBkVr9q1a2P79u1KniHjzBngxbpAQuIPffNiu6Fv3t6Y0SUOeXPyCSNDPOnslACvT07RWKZAO/+mYGTesFAwMo+l0pI2YCkYKWgsbaxfvx5NmjSRfRS/emkXaJQFqZxw9iW1s2Rn1ApZL3vzY+TbyD9vsLSZIIGUCDiLp5R8mUcCrggwllzRYZlRAowno8T8zz+l18+8Xsdo7Chg2UwJIyq6MuqFf4wu9eNRp+o+ez6fMJJ4mPCQAK9PHoJLxWra+TcFI/PAUzAyj6XSkjZgKRgpaCxtTJw4EX369JF9bNu2LRYuXChtXyVS+pL6w7YMwP8q1UaJMNuva/8ev3f9ADk6tXKY/CSBFAmkFE8pOjKTBNwQYCy5AcRiQwQYT4Zw+aXzfRGM9u0FOibe+9yND0F47nOo9mgQerahYOSXgWLBTvP6ZMFBSdIl7fybglESOF6YFIy8gOeqqjZgKRi5ImWtsg4dOmD+/PmyU2PHjkW/fv2k7atESl9SX0fFoezrhZA2KPEx7PjF6xFcsYKvusm/6ycEUoonP+k6u2kxAowliw2In3eH8eTnA6ij+ykJRl4tfC3+5s2bQGRp5a9XzrQHP2UqgGUD99oW1bYVR0Yibdq0ig8NEjBCgNcnI7R846udf1MwMm8MKBiZx1JpSRuwFIwUNJY2KleujMOHD8s+rl27Fs2aNZO2rxIpfUl9OvtHNJlWRe3SnuNAjhxqHi0SSEIgpXhK4kKTBHQRYCzpwkQnnQQYTzpB+bGbWPRaLH6tPU6ePInHHntMm2Us/ddfQJWSSp3HsxzCT2nzYG7Xw8iZ4x4FI4UODU8I8PrkCbXUraOdf1MwMo89BSPzWCotaQOWgpGCxrJGXFwc0qVLh1ixTeu/x5EjRxAREeEwffaZ0pfUxpZL8eypAbJPd2z7paU/adspxNPtaWVLTAQ6gZTiKdDPmed3fwgwlu4P1we1VcZT4I/8999/j1KlSikn2r17d0yePFnJM2RcvAg0rq5UyZnjPOKCwzC42SmUe/w6BSOFDg1PCPD65Am11K2jnX9TMDKPPQUj81gqLWkDloKRgsayxpUrV1CwYEGlfzdu3EDWrFmVPF8Yyb6k0qTBfx+rhrxBP8juXC74Agp9mbjooyxgggSSEEgWT3xMPwkhmnoJMJb0kqKfHgKMJz2U/NsnOjo62athw4YNw5AhQzw/sYMHgHbNZf3rcZlQJM8pu92mymW88MyPFIwkHSY8JcDrk6fkUq+edv5Nwcg87hSMzGOptKQNWApGChrLGrt370bNmjVl//LkyYP//ve/0vZlIumXVNjxEwh+4wWlSyf7fIIybSspeTRIICUCSeOJ6zqkRIl5eggwlvRQoo9eAownvaT82y/pOkaFCxfGhQsXPD+pDbbdYgd0lvXPxJRAlXxb7Hbdwr+ic+uzFIwkHSY8JcDrk6fkUq+edv5Nwcg87hSMzGOptKQNWApGChrLGkuXLkWbNm1k/5599ll8+eWX0vZlIumX1L1Zy5Bl3lDZpUsxhZBx717kzm1b2ZEHCbghkDSeKBi5AcZipwQYS07RsMADAownD6D5YZWkglGDBg2wceNGz89k/lxg0jBZ/6vo2ng+fJHdLpH1T4zpcYyCkaTDhKcEeH3ylFzq1dPOvykYmcedgpF5LJWWtAFLwUhBY1lj5MiRGDx4sOzfO++8g6lTp0rbl4mkX1K/jv0QBT4eJLt0KOZpVDrzEZcvkkSYcEUgaTxRMHJFi2WuCDCWXNFhmVECjCejxPzT/6233sLcuTaR59+jS5cumD59usM0/jnSJhZ9lNjempjX0CHfKHs76YJisGLwQVSrxl3SjINlDS0BXp+0NKyZ1s6/KRiZN0YUjMxjqbSkDVgKRgoayxrt27fHggULZP8mTpyIXr16SduXiaRfUieGfo4Kn3WTXbqQ8DiKnN4kbSZIwBWBpPFEwcgVLZa5IsBYckWHZUYJMJ6MEvNP/+XLl6N169ay814/0d31bWDnZ7K9GXF9MCjPO9Je2vsA6tevlGztJOnABAnoIMDrkw5IPnbRzr8pGJk3GBSMzGOptKQNWApGChrLGrVq1cKuXbtk/z7++GO0aNFC2r5MJP2SOtN0OMr+sFh26begR5Dz5CFpM0ECrggkjScKRq5oscwVAcaSKzosM0qA8WSUmH/6J10zskCBAhD3yh4fnTsCu7+Q1ZfEdUKPPP2l/X7rY2jzWhkKRpIIE54Q4PXJE2qpW0c7/6ZgZB57CkbmsVRa0gYsBSMFjWWN3Llz49q1a7J/+/fvR9WqVaXty0SyL6knCyvduR2UGRlOfq/k0SABZwSSxRN3SXOGivluCDCW3ABisSECjCdDuPzWWSxwXbRoUaX/d+7cQbp06ZQ83UaSV9LibRVbp/kIX2YV93BB6PnMWfTrVYSCkW6gdEyJAK9PKVGxVp52/k3ByLyxoWBkHkulJW3AUjBS0FjS+Pvvv5E5c2alb1Yat6RfUnHlSiJDULTsb2xQKEJPevHrnGyJiQeBQNJ44hNGD8Ko359zZCzdH64PaquMpwdj5O/evYv06dMrJ3v+/HkUKVJEydNtbLa9kt+rXTL3qOgqeDbvUrxY/ldMGRtOwSgZIWYYIcDrkxFavvHVzr8pGJk3BhSMzGOptKQNWCsJD0onaUgC586dQ/HixaUtEuKLIU2aNEqerwzlSypdeqRt/6LSlUs9luDRDnWVPBok4IyAEk+RXAjUGSfmuyfAWHLPiB76CTCe9LPyd8+CBQviypUr8jTEkgA1atSQtqFEbCzwsu2+6HRUsmrDMRqHI57B2oUPUTBKRocZRgjw+mSElm98tfNvCkbmjQEFI/NYKi1pA5aCkYLGkoa4URFrGDmOwoULQzwybZXD8SUVbPtVrkaf9sm69cem7/FQfvUJqWROzCCBfwk44kmYkRSMGBdeEGAseQGPVZMRYDwlQxKwGQ0bNsTGjRvl+S1dulRZCFsW6E3cvAk0bwRcvajUOBj9FN4uNgeHPrH92MbXrxU2NIwR4PXJGC9feGvn3xSMzBsBCkbmsVRa0gYsBSMFjSUN03fsMPksHV9Sub79BmUWTlJa/zMuHTKfPo+g4CAlnwYJOCPgiCdRTsHIGSXm6yHAWNJDiT56CTCe9JLyf79u3bph2rRp8kRGjBiBQYMGSdujxK1b/4hGV87K6tEJQSiV8wROb81AwUhSYcITArw+eUItdeto598UjMxjT8HIPJZKS9qApWCkoLGkMXr0aAwcOFD2rWvXrsqNjCzwUcLxJVVy4Vzk/XaP0ovlmQfhtYOdlDwaJOCKgCOehA8FI1ekWOaOAGPJHSGWGyHAeDJCy799J0+ejJ49e8qTaNu2LRYuXChtjxO2NSlRuYRSvVbGrVizsTBy5PBwUW2lNRoPKgFen6w/8tr5NwUj88aLgpF5LJWWtAFLwUhBY0mjY8eOmDdvnuzbhAkT0Lt3b2n7OmH/ktq7F9V6dUSa2LuyO5/EvIwvGr2P+R+EyDwmSMAdAd70uCPEcr0EGEt6SdFPDwHGkx5KgeGzbt06vPhi4nqM1apVw17bfY7Xx9WrQL2KSjMls0Zh7YLseKxUWiWfBgkYIcDrkxFavvHVzr8pGJk3BhSMzGOptKQNWApGChpLGvXq1cO2bdtk31auXIlWrVpJ29cJ8SV1bM0aVBrdV+nKk5n34YVm+TG0LwUjBQwNlwR40+MSDwsNEGAsGYBFV7cEGE9uEQWMw6FDh1ClShV5Prly5YK4d/b62L0L6PyqbEa8tl8wz/dYPTQedWtRMJJgmDBMgNcnw8hSvYJ2/k3ByDz8FIzMY6m0pA1YCkYKGksaxYoVg9jS1XF4tVuHoxETP8WX1Mlly1B+0lDZ6u34UIQ/fAET2gWhXWsKRhIME24J8KbHLSI66CTAWNIJim66CDCedGEKCKfLly/j0UcfVc7lzp07SJfOy9fG5s0BJg+X7UZFV0G98FWY8lYcXn+ZgpEEw4RhArw+GUaW6hW0828KRubhp2BkHkulJW3AUjBS0FjOiI+PR1hYGMSn4zh9+jRKlSrlMH3+Kb6kTnz0ISqMVxeEfCjXD1jxXjAa1g/2eR/ZAf8hwJse/xkrq/eUsWT1EfKv/jGe/Gu8vOnt7du3kTFjRqUJU+6X/zMYWJ24FtLqmNfRMd8I9H0hDgN6UjBSgNMwRIDXJ0O4fOKsnX9TMDJvCCgYmcdSaUkbsKZ8ASqt0zCTwPXr120LIeZQmhTjJx6PtsohvqQujxmNEqvnK10SgtH2KSF48gnukKaAoeGSAG96XOJhoQECjCUDsOjqlgDjyS2igHIQ917iHsxxHD58GBUrqusPOcp0f06dDMwZL923RTdEi/BZeLlSHGaOo2AkwTBhmACvT4aRpXoF7fybgpF5+CkYmcdSaUkbsBSMFDSWM86cOYOSJUvKfgUHByM6OhohIdZ5zUt8Sd1o2xoPH9sn+ykSD+W8jFOrQpEvDwUjBQwNlwR40+MSDwsNEGAsGYBFV7cEGE9uEQWUg9il88CBA/Kc1q9fj+eff17aHiXWrQEGd5dVv4suhcjwTaiaPwFfLguT+UyQgFECvD4ZJZb6/tr5NwUj8/hTMDKPpdKSNmApGCloLGeIXTmqV68u+1WoUCFcunRJ2lZIiC+pv1s2QY7zx5XuZLc9YfS/baEIDVWyaZCASwK86XGJh4UGCDCWDMCiq1sCjCe3iALK4ZVXXsFHH30kz2n27Nl46623pO1R4tBB4M3E3df+WfT6DB7JmIATX1Aw8ogpK9kJ8Ppk/UDQzr8pGJk3XhSMzGOptKQNWApGChrLGWvXrkXz5s1lv2rWrImdO3dK2woJ8SUVW6sqMt78VXZnRlwfTHv0HXy/kWqRhMKELgK86dGFiU46CDCWdECii24CjCfdqALCsV+/fhg3bpw8l8GDB2P48MQFq2WBkcSPV4AGVZUa+R46hZiwjPjfjjAE8YFshQ0N/QR4fdLPylee2vk3BSPzRoGCkXkslZa0AUvBSEFjOWPmzJno0qWL7Ffr1q2xdOlSaVshce/2HYRVLIZgJMjuNEn3Ke6WKodNyykYSShM6CLAmx5dmOikgwBjSQckuugmwHjSjSogHKdMmYIePXrIc2nbti0WLkxcsFoWGEnExAARhZQaNTNuw7EMxfDjF6HIpK6zrfjRIAFXBHh9ckXHGmXa+TcFI/PGhIKReSyVlrQBS8FIQWM5Y8iQIRgxYoTsl/jFa+zYsdK2QiL64kWkaZz42pzoU+Fsx1C9/ENYMtU6ay1ZgRX74J4Ab3rcM6KHPgKMJX2c6KWPAONJH6dA8Vq9ejVatmwpT6dWrVrYsWOHtD1OVC0L/Pm7rN4jeCaW5HgOR5eFoGB+PmIkwTBhiACvT4Zw+cRZO/+mYGTeEFAwMo+l0pI2YCkYKWgsZ3To0AHz5yfuPjZ58mR07564YKIVOhy9dQvS9Ggru3IzLj0K5fkO7WsEY/wwCkYSDBO6CPCmRxcmOukgwFjSAYkuugkwnnSjCgjHpGtI5s+fH1eu2F4p8/awrfmIU1/LVm7Hh+L19Kvw3qLK3FVWUmHCKAFen4wSS31/7fybgpF5/CkYmcdSaUkbsBSMFDSWM5599lls2rRJ9mvlypVo1aqVtK2QiB07CqHLZsquREVXQb3wVejfNAj9ulMwkmCY0EWANz26MNFJBwHGkg5IdNFNgPGkG1VAOJ4/fx7FihVTzkXsUhsW5uXi1NOnArPeV9q9lxCMqKF7Ua1VQSWfBgnoJcDrk15SvvPTzr8pGJk3DhSMzGOptKQNWApGChrLGRERETh27Jjs19atW1G3bl1pWyER/1xdBF/+TnZlalw/DM3TGRPaBaFdawpGEgwTugjwpkcXJjrpIMBY0gGJLroJMJ50owoIxz///BNZs2ZVzkWISEWKFFHyDBs20QmdOwAHtilVj9UciidmdFTyaJCAXgK8Pukl5Ts/7fybgpF540DByDyWSkvagKVgpKCxnJEjRw5cv35d9isqKgrly5eXts8TN28CkaWVbogFr3dnLoeFfYLRtFGwUkaDBNwR4E2PO0Is10uAsaSXFP30EGA86aEUOD4JCQkIDlbvYV5++WV8+OGH3p+kbfHrv54oi8xBf8q2dlebgBpzX5Y2EyRghACvT0Zo+cZXO/+mYGTeGFAwMo+l0pI2YCkYKWgsZcTGxiZ79PnChQsoXLiwdfq507YAZNfWsj934kOQP9cZxAWHYcPoYFSPVG+2pCMTJOCEAG96nIBhtmECjCXDyFjBBQHGkws4AVoUlMI+90JI8vq4dQuoVFxpZm69jeg42bYgNg8S8IAAr08eQEvlKtr5NwUj8+BTMDKPpdKSNmApGCloLGX8/vvvyJkzp9InkZc9e3Ylz6fGujXA4MRFuM/FFEOlfP88Zv3VzBCUKc0dP3w6Pn74x3nT44eDZtEuM5YsOjB+2i3Gk58OnBfdvm+C0bffAK2flz2LSQhCn4bnMGVCepnHBAkYIcDrkxFavvHVzr8pGJk3BhSMzGOptKQNWApGChpLGeJpoqJFiyp9Ek8dhYRYaF2grw8DbzSVfRQLN+bNdQEJQcE49VEI8uWlYCThMKGLAG96dGGikw4CjCUdkOiimwDjSTeqgHFMKhjVq1cPW7Zs8f78li4G3h8o2/kuuhRG1tuEFTNDZR4TJGCEAK9PRmj5xlc7/6ZgZN4YUDAyj6XSkjZgKRgpaCxliPWKKlasKPuUK1cuiLGz1HHjD6BaGaVLlTPtwdn0BfHjF6HIlFEpokECbgnwpsctIjroJMBY0gmKbroIMJ50YQoop44dO2LevHnynAYNGoQRI0ZI2+NEnx7AxtWy+uqY17G4ygh8sZSCkYTChCECvD4ZwuUTZ+38m4KReUNAwcg8lkpL2oClYKSgsZQhdkSrX7++7JPYMe3IkSPStkoioWJpBN22LX797/F26AKseqguft8Ralsw0pHLTxLQR4A3Pfo40cs9AcaSe0b00E+A8aSfVaB4TpgwAe+++648nU6dOmHmzJnS9jhROxL49QdZfWDQBOwo3gIH1lEwklCYMESA1ydDuHzirJ1/UzAybwgoGJnHUmlJG7AUjBQ0ljJWrVqFl156SfapQYMG2Lhxo7Stkoh//WUEf7NHdmdpbEf0DR+IX2yCEQ8SMEqANz1GidHfGQHGkjMyzPeEAOPJE2r+XWfx4sVo27atPIlmzZph7dq10vYo8fffQOUSStW6GTbhxxylcGYT75sUMDR0E+D1STcqnzlq598UjMwbBgpG5rFUWtIGLAUjBY2ljFmzZqFz586yT23atIG4ebHaETttCkJnj5Pd+m9sLtQs9DXObA6TeUyQgF4CvOnRS4p+7ggwltwRYrkRAownI7QCw3fDhg144YUX5MlERkZi37590vYoEfU10KaJrCoWvM6b85xtfcow/LqTgpEEw4QhArw+GcLlE2ft/JuCkXlDQMHIPJZKS9qApWCkoLGUMWrUKIj35R1H7969IR6PttoRfeok0rR8RulWh7ybMW+buraR4kCDBJwQ4E2PEzDMNkyAsWQYGSu4IMB4cgEnQIuEOPTUU0/JsytQoADEfbNXx+KFwPjBsolb8WF45OHzdvvatlCEUjOSbJjQT4DXJ/2sfOWpnX9TMDJvFCgYmcdSaUkbsBSMFDSWMnr27InJkyfLPo0ZMwb9+/eXtlUS9+7exb2K5ZEl/obs0pqMvdH8cC9pM0ECegnwpkcvKfq5I8BYckeI5UYIMJ6M0AoM3++++w6lS5eWJxNsW5gxJibGtj6jFws0Tv4AmDdRtikSOXOcR1xwGC6tD0W2rEoRDRLQRYDXJ12YfOqknX9TMDJvKCgYmcdSaUkbsBSMFDSWMl577TWsWLFC9mnOnDkQO3ZY7RBfUjcrVkfuuJ9l184FV0KxE59ImwkS0EuANz16SdHPHQHGkjtCLDdCgPFkhFZg+P7yyy/ImzevcjI3b95ElixZlDxDxulTQIvEDU1E3RoZt+F4hmI4sSIEj4QHGWqOziQgCPD6ZP040M6/KRiZN14UjMxjqbSkDVgKRgoaSxnPPPMMtmzZIvv08ccfo0WLFtK2SkJ8SX1X6y1E3Nwqu3Q2zVMofmSVtJkgAb0EeNOjlxT93BFgLLkjxHIjBBhPRmgFhq8Y83Tp0iknc/nSZRQsVFDJM2w8XgCIj5PVGqX/DPsylUXUwhAUKUzBSIJhQjcBXp90o/KZo3b+TcHIvGGgYGQeS6UlbcBSMFLQWMooX748vv32W9mnzZs3o3599VcpWejDhPiS+qFKcxSPTuzr9gLvos7GHj7sFf+0vxLgTY+/jpz1+s1Yst6Y+HOPGE/+PHqe9z1Tpky4deuWbEDcl5UrV07aHiWqlgX+/F1W7RoyByuyN8C+2SEoXZKCkQTDhG4CvD7pRuUzR+38m4KRecNAwcg8lkpL2oClYKSgsZRRsGBBXLlyRfZp//79qFq1qrStkhBfUndtN09Zg27KLq2qtACtFjWQNhMkoJcAb3r0kqKfOwKMJXeEWG6EAOPJCK3A8S1TpgxOnbK9RvbvsW3bNtSpU8dhevb55uvAoe2y7mfRzfF6+ETsnBaCiMcpGEkwTOgmwOuTblQ+c9TOvykYmTcMlhOMrl+/jhMnTuDo0aM4fPgwduzYAfF+szh69eqFiRPVRezcodi7d699m/Tdu3fbd10QAkGNGjXwxhtvKLsyuGvHaLk2YCkYGaWXev5p06ZFdHS0/IMi9sSNi9WOe7Z/F2mrP650a/ZzO/H2uOJKHg0S0EOANz16KNFHDwHGkh5K9NFLgPGkl1Rg+Yknu7duTXzlftWqVWjZsqV3J/mx7ZX9YYkbg9yMS49Ceb7DpgkhqFzBiwW1vesVa/sxAV6frD942vk3BSPzxstyglFQkHPV34hgFB8fjwEDBmDcuHFOafXr1w+jR4/2bicGJ61rA5aCkRNIPs4WQpEQjLTH5cu29+ZtoqLVjugLF5Dm+aeVbk1o/T369M+s5NEgAT0EeNOjhxJ99BBgLOmhRB+9BBhPekkFll/r1q2xfPlyeVIzZ85Ep06dpO1R4vw54IWaStUcOS/i07FhqF6VgpEChoYkcOTqUZTLFyFtbUJcn7766it7VmRkJDJkyCCLXdWTTkzcdwLa+TcFI/NwW1owKlmyJCIiIrBy5Ur7GRsRjCZMmIB3333XXq9mzZro27cvChQoYH/9SIhIu3btspcJv969e9vTZv5HG7AUjMwka15b4mm2HDlyKA3+/vvvyJ49u5JnBePetWtIW1P9Apv7ymF0HBhuhe6xD35GgJMyPxswC3eXsWThwfHDrjGe/HDQTOiyuL+fNGmSbGnUqFF47733pO1R4uQJoFXia/t34kOQ7+GLWPOfYNSpScHII6YBXmnqwenovn8Y5j49Bh0qtE92tmLeIHb0Ez84Z86c2f4GjBCN5kXNR8c9AzAlcii6VemarB4zUo+Adv5Nwcg87pYTjKZMmWIXiR5//HH7xP3q1asID/9nUqxXMBICTZEiRRAXF4e6devi888/V54kuXv3Lho3bgzxjnRISAguXbqE/Pnzm0fV1pI2YCkYmYrWtMbEuBQqVEhpT9yspkmTRsmzgnHPFrPBTxZFWFCC7M6qFzei1XDboo48SMAgAU7KDAKju1MCjCWnaFjgAQHGkwfQAqDK0KFDMXz4cHkm4g0B8QaAV8eB/UD7xF1vr8VmQ/G8x7BiYDAa1qNg5BXbAKwsnhB6cmU9eWYpiUYrVqzAa6+9Jn3Ezso3Hr1pF4scmd++tNXpE0oOH37ePwLa+TcFI/M4W04wSnpqnghGgwcPxsiRI+1NHTt2DGXLJp9UHz9+HE888YTdR/hrv6iS9sETWxuwFIw8IXj/64gFFrXrFQmhSNysWvEQ/forogJyBl+X3dv03DI0GFdb2kyQgF4CnJTpJUU/dwQYS+4IsdwIAcaTEVqB46t9K0CcVdeuXTFt2jTvTnDrFqBHW9nGpZhCeDLfbizsE4ymjSgYSTBMSAKOJ4UcGUlFI/HGilgT13EU6VgCF0r87jCdPpkkHZi47wS0828KRubhDjjBKCEhAUWLFsXFixdRsWJF+8LZznCJ8qioKLv/2bNn4Wr9JGdtOMvXBiwFI2eUfJt/8OBBZUc08ZSZdsc03/ZO/espCUb/y1YeufdtUB1pkYAOApyU6YBEF10EGEu6MNFJJwHGk05QAeY2e/ZsZc2iNm3a2Des8eo0160BBneXTRyPjkCN8PWY9U4wXnqRgpEEw4RCwJlo9N1336F06dKJvs/a3kaom0XaScUlWcBEqhLQzr8pGJmHPuAEo59//hmPPPKInZB4/1m8B+3sEOVjxoyxF//000/y1Tdn/kbytQFLwcgIudTz3bx5Mxo0SHy/PVu2bPjjjz9SrwMG/pK4ib4TURbZgv9Wax29DISFqXm0SMANAU7K3ABisW4CjCXdqOiogwDjSQekAHRZtmwZXn/9dXlmTZo0wSeffCJtjxKTJgLzP5BV90bXQuPwxRSMJBEmnBF4dmQjbMpwSBZnjQpGyOZYiDWM7EcSsUiU5/o6UTx66aWXMGLECFmfidQjoJ1/UzAyj3vACUbiUUHxyKA4Fi9eDPErhbNDlLdt+8/jqnv27EH16tWduRrO1wYsBSPD+FKlQo8ePSDWzNIe4gk1Kx7iJnp3xf6oH/ex2r1R04EmTdU8WiTghgAnZW4AsVg3AcaSblR01EGA8aQDUgC6CHGoWbNm8sxq166N7du3S9ujxIuNge+/lVVnxvXGwDzdKBhJIkykRECscys2xLldI1Z5ggjb/gQ2RgNJxCKZr2ksY8aM+O2335AuXTpNLpOpQUA7/6ZgZB7xgBOMVq1aBaHsikM8QVK/fn2ntLZs2YJnnnnGXi52YmvVqpVT36QFIiBdHddsu1o51sc5d+6c6Ytqu/rbLNNHIKULufiisOIhbqK7tLyEZT82VLoXH14EMRts7+kHBSn5NEjAFQERT998843dpXz58sqmAK7qsYwEkhJgLCUlQtsbAownb+j5b12xCU2jRo3kCZQrVw4HDhyQtuGEbRerNFVLwTbJkVVbpf0YW7JUxtS349CSv7NJLkyoBE6ePGlf0sT+A3JScehOPJBe8zqjQ0RSm7AvcfL111/LeWCSYpr3kYAQiQoWLGj/CxSMzAMdcILRggUL0L79P1sh7t27F9WqVXNKS5Q7nipauHChfNrIaQVNgZH1jtasWWPJrdo1p/NAJlu3bg3xCqP22LFjh9a0VPo/0x/HY+cPY2ZsB6Vfx97ui+tlyip5NEiABEiABEiABEjAHwgcOXIEvXv3ll0tUKCA/S0BmWEwEWTbJblmd/UNgw6hi7DmodroUvsc6lT/xWCLdH+QCIgNkwYOHIjbt28nf6LIAcKJWJQhQwb7ciiOjZUc7vxMHQLitcHmzZvb/xgFI/OYB5xgNGPGDPvuCgLRoUOHUKlSJae0Dh8+jMqVK9vLRb3OnTs79U1aQMEoKRH/sxctWgTx3rzjEIulz50712Fa7nP4jDI4ei0bov5bG0XCLsr+/ZG/BI72GyxtJkiABEiABEiABEjAXwiICXrPnj1ld8PDw5X7M1lgIFFuzDBk+/mcrLEluhFahc+gYCSJMOGKgBAb/vOf/+DMmTPAyOzqk0XiSaNB/65npGmkRIkS9joPP/ywJpfJ1CRAwej+0A44wSi1njDiK2n3JyBTs9VJkyZhwIAB8k926dIFEyfaFkm04CEe02/a7h6+vfYQul1biWHop/Ty3mbb4ny5cil5NEjAGQG+9uGMDPONEmAsGSVGf1cEGE+u6ARu2f79+yHWLXIchQsXxunTpx2mR5/Btl3Swkb2lXWvx2VGkTwnMa1THFo0kdlMkIBTArdu3ULDsY1xKM/Z5D5JnjB68803MX78eIj1i3j4jgBfSbs/7ANOMEqtNYzcDYd20S0ueu2Olm/KxQ56gwYNkn/83Xffxbhx46RtpYS4iW70+k1E/foQZl8dilZhS9Tu7TkO2yp9ah4tEnBCQMSTuEEXR2RkJNcwcsKJ2e4JMJbcM6KHfgKMJ/2sAsnz4MGDqFq1qjylQoUK4dKlS9L2KLHc9gT5mP6y6q+x2VEy7xHM7haMVs0069BIDyZIQCUwL2o+Ou5J/GEZLtYw2rVrF2rUqKE2QCvVCWjn33wlzTz8AScYcZc084Ij0FsaMmSIsu2leF955MiRljxtcRP98itX0eH4BNsGDZ+qfaxUC1i0XM2jRQIuCHBS5gIOiwwRYCwZwkVnNwQYT24ABWixdokIcYr58+fHlStXvDvbV1sCR/fJNtbFvIJ2+cZQMJJEmHBFIJlY5HiiKOlC2P/mi1cqP/jgA1dNsiwVCFAwuj+QA04wEosYP/LII3Za7733nn3hMWfoRPmYMWPsxT/99BPEO9NmHdqA5RNGZlE1t53+/fvj/fffl40OHz4cgwdbcy2ge7Z3qX+v2Rj5gtVFuu2dX7AGqJL4y5w8ISZIwAkBTsqcgGG2YQKMJcPIWMEFAcaTCzgBXLRv3z489dRT8gyLFSuGs2dTeA1IerhJxMQAEY/anBKk45thS/FJthoUjCQRJpwRcCoWOSqkIBplO5AB4omWNGnSOLz46QMC2vk3nzAybwACTjAS2yCKxYsvXrxo3xZR/Grh7BALYottD4W/+GIyspC1szYd+dqApWDkoGKtT/FrwOTJk2WnhHjUt2/i++6ywAKJ2HFjEbpkWvKedLE9Ktu5a/J85pCACwKclLmAwyJDBBhLhnDR2Q0BxpMbQAFaLHaorVOnjjy7iIgIiJ3TPD7u3AEqFFWq18y4DccyFMOid4PR5Dm+kqbAoSEJuBOLxC5oYjfuWT8tQky1tLIebE8a7eq3ha+lJRLxSUo7/6ZgZN4QBJxgJNCIp0QcrxaJnRfKlk2+5fjx48fh2PJQ+IunS8w8tAFLwchMsua1JXbFmzVrlmxQiEfdu3eXtpUScX17I+SLlbJLf8alw/7Gc9FgfOINlixkggTcEOCkzA0gFusmwFjSjYqOOggwnnRACkCXjRs3omHDhvLMxNp64qkjr46nngT++FU20SN4JpbkeA4rBgajYT0KRhIME5JAUrGo5o0nsGvEdlkudtYWPzbnzp3b/tpkrTH18dNjf8nyWjcisGP4VmkzkfoEtPNvCkbm8Q9IwUgINGKHhfj4eNStWxeff/65sqiruCFp1KgRtm3bhpCQEPvTSAUKFDCPqq0lbcBSMDIVrWmNtWvXDgsXLpTtzZw5E506dZK2lRKxE8cjdGHi01Bbo5/DyZ6z0LNziJW6yb74CQFOyvxkoPygm4wlPxgkP+oi48mPBsvErn766ado2rSpbFHcu2/d6uXE++32wFcbZZsLYruiT953sWZYMOrUoGAkwTBhJ3Dk6lE8ubKepDH36TEodbckXnnlFfz444/o0KEDxo4dC/EggjiEqBkXF4c6w+rj4MNnZL1vX9qKcvkipM1E6hLQzr8pGJnH3nKCkXgEVQgsjuP69esQE3txCJHHkXaUN2nSxJFUPidMmACx65U4atasiX79+kGIQmIRPfHqkVjNXhzCr3fv3va0mf/RBiwFIzPJmtfWG2+8gSVLlsgG58yZg44dO0rbSomYD5cjbFQ/2aUT0WWxodPnGNiLgpGEwoRuApyU6UZFRzcEGEtuALHYEAHGkyFcAeOs3eFYnFTjxo2xYcMG785v+hRgVuLOt/ujn8Zz4cvw2ZhgPFWVgpF3cAOz9tSD09F9/zAIsahDBZvgaDtu3LiBnTt3Qsw3o6Ojk+0wKx5O6LykK+b8sRpTIoeiWxUuE+HL6NDOvykYmTcSlhOMhHhjZJV5sWZRSof4BywWNR4/fnxKxfY8sV6NWPQ6ONj8Lw5twFIwcjoEPi3wJ8Eoevs2pOnWRvK6FpsNU9scx4j3KBhJKEzoJsBJmW5UdHRDgLHkBhCLDRFgPBnCFTDO4sc7cU/mOFq2bAkhInl1LJgPfDBUNnE6+jFUC/8SWz4IRsUnzb/vl3+ICb8mIJ40cvaEkKvrk6t6fg3EzzqvnX9TMDJv8AJWMHIg+uqrr7B48WL7E0XikUKxVad44qht27bKjgwOf7M+tQFLwcgsqua2I2JAxIbjmD17Nt566y2HaanP6JMnkabVM7JP8bZU/yYXMG5UOpnHBAnoJeDqpkdvG/QjAUGAscQ4MJMA48lMmv7T1ty5c5X7rzZt2ij3Zx6dSX/bWwaffSirbohuiTbh47F7egjKlgmS+UyQgF4CvD7pJeU7P+38m4KReeNgOcHIvFPzbUvagKVg5NuxcPbX33zzTSxatEgWiwWw3377bWlbKXHv2jWkram+Ez3o6UMYOesRK3WTffETArzp8ZOB8oNuMpb8YJD8qIuMJz8aLBO7OnXqVGXTEfHjnfgRz6ujzStA1G7ZxJiEYRiX+w0cnBuCEsUpGEkwTOgmwOuTblQ+c9TOvykYmTcMFIzMY6m0pA1YCkYKGssY/rTo9b27dxFUvhjSQDxb9M8x5onPMeDDcg6TnySgmwBvenSjoqMbAowlN4BYbIgA48kQroBxFstHiGUiHEe3bt0wZYptDSJvjsb1gYunZAt9gqdiQY4X8M3iEBQuRMFIgmFCNwFen3Sj8pmjdv5Nwci8YaBgZB5LpSVtwFIwUtBYxmjfvj0WLFgg+zNjxgx07txZ2lZKiC+p6PJPIHNC4vad44quRN/11a3UTfbFTwjwpsdPBsoPuslY8oNB8qMuMp78aLBM7OqIESMwZMgQ2aIQj8QGNV4dTz0J/PGrbKJt2DJ8mu1pnPwwBOH5KBhJMEzoJsDrk25UPnPUzr8pGJk3DBSMzGOptKQNWApGChrLGGKLzPnzbYsi/ntMnz4dXbp0cZiW+hRfUrcqVUX22MSbn0l556DntkaW6ic74x8EeNPjH+PkD71kLPnDKPlPHxlP/jNWZvZ04MCBGD16tGxSiEfDhg2TtkeJsoWAuBhZtUfwTCzJ8Rx+2BCKLFlkNhMkoJsAr0+6UfnMUTv/pmBk3jBQMDKPpdKSNmApGCloLGN07NgR8+bNk/2ZNm0auna15naY4kvqt8hnEH73nOxvVHRVVHjxUaBdB6BYcZnPBAm4I8CbHneEWK6XAGNJLyn66SHAeNJDKfB8ku6QLMSjAQMGeHei1Wyv7N/4n2wjKroK6oWvwm/bQxHCDWYlFyb0E+D1ST8rX3lq598UjMwbBQpG5rFUWtIGLAUjBY1lDLGootiZw3GIRRffeecdh2mpz5jPNuBS7w9QPCxRMJIdDLI9Wj3BJnw1eFZmMUECrgjwpscVHZYZIcBYMkKLvu4IMJ7cEQrMcrHhyJw5c+TJTZo0CT169JC2R4khA4G1i5WqZXMcx/E9OZQ8GiSglwCvT3pJ+c5PO/+mYGTeOFAwMo+l0pI2YCkYKWgsYyS9QRELLIqFFi13nDuLhKa1cTm6AMJDryBNUELyLgrR6JMdfNIoORnmpECANz0pQGGWRwQYSx5hYyUnBBhPTsAEeHbLli2xevVqeZZiB9s33nhD2h4lNm0EereXVaMTglC5wDkc2ZRe5jFBAkYI8PpkhJZvfLXzbwpG5o0BBSPzWCotaQOWgpGCxjJGp06dlG1bJ0+erGzrapmO9n8X+OxD9915/lVgzDj3fvR44AnwpueBDwHTADCWTEPJhmwEGE8PZhjUqVMHO3bYfvT691i3bh2aNm3qMD37fN+2JtLSGbLu17bX+HtFrMRXq0NlHhMkYIQAr09GaPnGVzv/pmBk3hhQMDKPpdKSNmApGCloLGOIHdFmzZol+2NJwSg+HoiwrVMUFyv76TQRYrsJOnoJCA526sICEhAEeNPDODCLAGPJLJJsRxBgPD2YcVC2bFmcOHFCnvy2bdsgRCSvjkb1gEunZRNT4vtjR5VOWL+IgpGEwoQhArw+GcLlE2ft/JuCkXlDQMHIPJZKS9qApWCkoLGM4ReC0Z07QIWi+plFnQfS83Fr/cAeTE/e9DyY434/zpqxdD+oPrhtMp4ezLHPkycPxOTOcRw+fBgVK1Z0mMY/Y2JsP7YVUuq9kmYlwqpHYslUrnitgKGhmwCvT7pR+cxRO/+mYGTeMFAwMo+l0pI2YCkYKWgsY3Tp0gUzZ86U/TFlkUXZmkkJPmFkEkg2oyXAmx4tDaa9IcBY8oYe6yYlwHhKSiTw7XjbfU5YWBjEp+P4/vvvUaJECYdp/DMuDihbQKnXLN06FGhQAZNHUTBSwNDQTYDXJ92ofOaonX9TMDJvGCgYmcdSaUkbsBSMFDSWMa5evYq//voLQbYFo8X/s2fPjhw5LLh7BtcwskzMBEpHeNMTKCPp+/NgLPl+DAKpB4ynQBpNfedy69YtZMqUSXH++eefkS9fPiXPkJHCE0Z1M2xCtealMawfBSNDLOksCfD6JFFYNqGdf1MwMm+YKBiZx1JpSRuwFIwUNDSMEvh3lzTbP1bnNblLmnM2LElGgDc9yZAww0MCjCUPwbFaigQYTyliCejMX375BXnz5lXOUfyYl1REUhzcGZcvA89VU7zyZT+NgW0yoUt7CkYKGBq6CfD6pBuVzxy1828KRuYNAwUj81gqLWkDloKRgoaGBwRiPtuAkP6dEYwURCMhFk2YBzR41oOWWeVBJMCbngdx1O/POTOW7g/XB7VVxtODN/Jnz55VXj8TT3zHxsba9u/wYgOPPbuBTq9ImNfjMqNInpOY2yMYLZp40a5skYkHkQCvT9Yfde38m4KReeNFwcg8lkpL2oClYKSgoeEBAfEldXzVKuTf/AUePnEQQWLXNLEr2nOtgDfbA8WKe9AqqzyoBHjT86COvPnnzVgyn+mD3CLj6cEb/aioKGWB61y5ckHcQ3t1LFsCjH1PNnE0ujxqha/DuhHBqFWdgpEEw4QhArw+GcLlE2ft/JuCkXlDQMHIPJZKS9qApWCkoKHhAQHlS6pKFaQVbaS1/debX+A86AerBAYBJZ4iI22hZI+owDg5nkWqEmAspSrugP9jjKeAH+JkJ7hjxw7UqVNH5pcpUwYnTpyQtkeJgf2BT5fJqutiXkG7fGOwZ2YIHi9teyqbBwl4QIDXJw+gpXIV7fybgpF58CkYmcdSaUkbsBSMFDQ0PCDALykPoLGKUwKMJ6doWGCQAGPJIDC6uyTAeHKJJyALP/30UzRt2lSeW61atSBEJK+OF2yv6J8/LpsYlTACE3K/jlMrQ5AvDwUjCYYJQwR4fTKEyyfO2vk3BSPzhoCCkXkslZa0AUvBSEFDwwMC/JLyABqrOCXAeHKKhgUGCTCWDAKju0sCjCeXeAKycPHixWjbtq08t+bNm2P16tXSNpyIjgaeLAxoNgppkXYNtmWpiF82h9ofzjbcJiuQgI0Ar0/WDwPt/JuCkXnjRcHIPJZKS9qApWCkoKHhAQF+SXkAjVWcEmA8OUXDAoMEGEsGgdHdJQHGk0s8AVk4ZcoU9OjRQ55bhw4dMHfuXGkbTvx2DagRoVQrlO0YYtJlxc/bw5R8GiRghACvT0Zo+cZXO/+mYGTeGPwfAAD//3Kx8Q0AAEAASURBVOydebxVU//HP3do1kiDRAOZCikZmmhQkSJpJKHkUU9KoQnhVyqSMoSopEEpkUIpScgjQ1EeKUOiHhRSSu74O/tyd2vdc/a+Z62z9r7nnP05fzhrre9a373Xe31ed7U+ztknJTf0Al/GCfz888+oWrVqXt7vvvsOJ5xwgvFrMGFwCPz1119Yv3593oSbNGmCEiVKBGfynKlxAtSTcaSBTUgtBXbpPZk49eQJ1rhOetddd2Hs2LH2PY4YMQLjx4+368qFH74H2p0vDat89DbUqlgcHy4tJrWzQgIqBPj3SYVW0fQVz98//fQTqlSpUjQ3kmRXTaFh5M2KioKlYeQN4yBl5SYVpNX2fq7Uk/eMg3IFaikoK+3PPKknfzjH01X69++Pp59+2r6lhx9+GEOGDLHryoWvvwI6XSgNq1h5By6sk4uXZxaX2lkhARUC/PukQqto+ornbxpG5taAhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuepAxedtllePXVV+25zZ07F1dffbVdVy58/jnQra097HBOGo6t+g36NM3BlHE0jGwwLCgT4N8nZWS+DxDP3zSMzOGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonKYMNGjTAp59+as9t5cqVaNv2iOFjB6ItfPIx0LuT1LviMTsw+qoc3DaIX+eXwLCiRIB/n5RwFUln8fxNw8jcEtAwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxZOUwXLlyuHAgQP23D7++GM0bNjQrisX1r8H3NhNGjYwbTqa3d0GPa+iYSSBYUWJAP8+KeEqks7i+ZuGkbkloGFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKJ+mCf/75J0qXLi3Na8eOHahZs6bUplQJjUeHptKQadlDUX/Gv9GiKQ0jCQwrSgT490kJV5F0Fs/fNIzMLQENI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJF9y1axdq1KghzeuPP/5AmTJlpDalivXjz/XlnMNSH8W/XuqAuifRMFJiyc4SAf59knDEZUU8f9MwMrdENIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJF3QenaR9Qyj/Ffx4sVx+PBhpKSk5Depv+/dC1x4ljTugqPWYuXqE1CuLA0jCQwrSgT490kJV5F0Fs/fNIzMLQENI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJF3zzzTfRpk0be1716tXDli1b7LpWYe1aYOCRX1k7mFMMp1Xbgu0riqFECRpGWkw5KI8A/z7FvxDE8zcNI3PrRcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT9IFFy5ciB49etjzateuHVasWGHXtQq3DgLeWGIP/SCjKQad9hTeWVSahpFNhQUdAvz7pEPN3zHi+ZuGkTn2NIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJF1wwIABeOKJJ+x51a9fH5s3b7bryoUPNwDXdZaGTc0Zgbcad8HCp4+mYSSRYUWVAP8+qRLzv794/qZhZI4/DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SReM9KyiXOuh1TqvzMzQr6O1BnZ9bY/en10SZx79AS5r8jseGluDhpFNhgUdAvz7pEPN3zHi+ZuGkTn2NIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJF2woGHUvHlzrFu3Tm+eLywE7h0qjR2dMgnTjumK2ztsxbBb6tIwkuiwokqAf59UifnfXzx/0zAyx5+GkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56kC9atWxdfffWVPa/ly5ejQ4cOdl2pMGwwsGKxPWRXVjWcUe195KakYvL1n6BXj7NoGNl0WNAhwL9POtT8HSOev2kYmWNPw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVPUgUzMjJQsmRJiF9B++KLL3DqqafqzXPObGDCKHtsTqjUsNz7+K5Edcwfvh6tWp1Hw8imw4IOAf590qHm7xjx/E3DyBx7GkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654kir49ddf46STTpLmdPDgQZQuXVpqi7ryxwGg6ZlAVoY9ZFLOnXis+rWYdecGNGnShIaRTYYFHQL8+6RDzd8x4vmbhpE59jSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8SRVcM2aNWjdOvSQ6n9etWrVwrfffptf1Xu/4Vrggzftsc9m3YxZ9f+Fe/69mYaRTYUFXQL8+6RLzr9x4vmbhpE57jSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8SRVcMaMGejXr589p06dOmHp0qV2XbmQE/oSWuPQ19kOH7SHDk19DD83aYS+Pb6mYWRTYUGXAP8+6ZLzb5x4/qZhZI47DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SRUcOXIkJkyYYM/p9ttvxwMPPGDXlQvbtgGdW0rD6pXfgMva/IH2LXfTMJLIsKJDgH+fdKj5O0Y8f9MwMseehpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuepAp26dIFS5Yssef01FNPoX///nZduTDnudBDr0faw77Pqo4zj30f93XbjPqn7aNhZJNhQZcA/z7pkvNvnHj+pmFkjjsNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJFTz55JOxfft2e05vvPEGLr74YruuXGjdFPhxhz1sUWZv9K8+Fs8O/Q/Klc2kYWSTYUGXAP8+6ZLzb5x4/qZhZI47DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SRM8fPgwSpUqJc1nW+grZXXr1pXaoq789RfQsI7UfWlGd9xWZyKmj3g3r52/kibhYUWDAP8+aUDzeYh4/qZhZA4+DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SRP873//i3r16tnzSUlJwaFDh1CyZEm7TamQnf33A6//OmQP+zHrGNza8kP07/5eXhsNIxsNC5oE+PdJE5yPw8TzNw0jc+BpGJljKWUSBUvDSELDigYBblIa0DjEkQD15IiGAUUC1JIiMHZ3JUA9ueJJmuBLL72EK6+80p7P2WefjU8++cSuaxX69QHeX20P/TW7LJ648VM0abg+r42GkY2GBU0C/PukCc7HYeL5m4aROfA0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPEkTXDs2LG466677PnceOONmD59ul3XKtz/f8C8J+2h72VchJ8nz0SFo2gY2VBYiIkA/z7FhM+XweL5m4aROeQ0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPEkTbBr165YvHixPZ9HHnkEgwYNsus6hewO7ZG2Y7M9dHLOKLRb0g8//0jDyIbCQkwE+PcpJny+DBbP3zSMzCGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonKYK5ubmoUaMGdu/ebc9n9erVaN26tV1XLhw8iNxzT0EKcu2h3Ustwcy3G2DDBhpGNhQWYiLAv08x4fNlsHj+pmFkDjkNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJEfzll19wzDHHSHPZuXMnjj/+eKlNqfKf94G+V9lDMnNTcEX9L7FkTjrWr6dhZINhISYC/PsUEz5fBovnbxpG5pDTMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csWTFEHLwGnatKk9l9KlS+PAgQNITU2125QKoU8s4cbrQw+8XmUP+zSjIRb2eRljbs+iYWRTYSFWAvz7FCtB78eL528aRuZ40zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFkxTBmTNnom/fvvZc2rVrhxUrVth15cKboV9GuyX0C2nCa2rOCNSYOBCXtcukYSRwYTE2Avz7FBs/P0aL528aRuaI0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFkxTBIUOGYOrUqfZchg8fjgkTJth1pUJODnDRecAvR56HtDerPM6svB7rniuP44/LoGGkBJSd3Qjw75MbnfiIiedvGkbm1oSGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56kCDZu3BgfffSRPZd58+ahV69edl2p8O03wGXNpSED06bjxWPaYffqdGRm/kXDSKLDSiwE+PcpFnr+jBXP3zSMzDGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15Ion4YN//PEHypYtK81j8+bNqF+/vtQWdWX5MmD4v+zuP2UdjVOP/Rit66Zg8dPpoJ5sNCwYIEA9GYDocQrx/E3DyBxsGkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654Ej64YcMGnHde6Ctk/7zS09Nx8OBBFC9ePL9J7X3KZODph+wxazLao8txT2FUlxTcPiiNhpFNhgUTBPj3yQRFb3OI528aRuZY0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk/DBp59+Gv3797fn0apVK7z55pt2Xbnwf/cCC6bbwxZkXoebq9+LxfekovVFqTSMbDIsmCDAv08mKHqbQzx/0zAyx5qGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56ED950002YPv2IwTN69GiMHTtWf14jbgeWzbfHz8waiGHH3oEvF6WhSuUUGkY2GRZMEODfJxMUvc0hnr9pGJljTcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT8IHTzvtNGzdutWex4svvogrr7zSrisXbrgW+ODIJ5Qey74dT9T5Nz5/LT0vFfWkTJQDXAhQTy5w4iQknr9pGJlbFBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueBI6+Ouvv+Loo4+W5rB9+3acdNJJUlvUlV9+AS48C8jNtYcMTX0M2R07Yer9aXlt1JONhgUDBKgnAxA9TiGev2kYmYNNw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVPQgffeecdtGjRwp5D6dKlsX//fqSl/W3u2IFoC7NmAJPutnv/mZOGE4/ZjClDy6Jb59S8durJxsOCAQLUkwGIHqcQz980jMzBpmFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKJ6GDDz/8MIYOHWrPoWPHjnjllVfsulLB+lRR66bAT9/Zw17K7Ikbqk/AxtlpqFUzJa+derLxsGCAAPVkAKLHKcTzNw0jc7BpGJljKWUSBUvDSELDigYBblIa0DjEkQD15IiGAUUC1JIiMHZ3JUA9ueJJ6GCnTp2wbNkyew4TJ07EHXfcYdeVCtu2AZ1bSkPuwQTMr9ETX65IR8rffhEfei0RYiVWAvz7FCtB78eL528aRuZ40zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk7BBa13Lli2LzMxMew7r1q1D8+bN7bpS4ZOPgd6dpCFLM7rjjSsfxOMTj3zFjXqSELESIwHqKUaAPgwXz980jMwBp2FkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKJ2GDH330ERo3bmzff2pqat7zi8qUKWO3KRV+/DH0lbRG0pBZWQNQctxI9Lzq7+cXWUHqSULESowEqKcYAfowXDx/0zAyB5yGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56EDT766KO45ZZb7Ptv1aoV3nzzTbuuXLh3DPDCM/awrNwUnFvuXSyaXxMn1vnn+2ihKPVkI2LBAAHqyQBEj1OI528aRuZg0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk7DBLl26YMmSJfb9jx07FqNHj7brSoUffgDanw9YD77+57Ug8zqMrHkvvl6ZjtCHl+wX9WSjYMEAAerJAESPU4jnbxpG5mDTMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csWTkMGMjIy85xdZ7/mvNWvWoGVL+aHV+bFC3yc9AMyaanf7KzcVZ1XYgJZNq+CJB488v8jqQD3ZmFgwQIB6MgDR4xTi+ZuGkTnYNIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJGRw06ZNOPvss+17Twn9hNm+fftQrlw5u02pcFNf4N0V9pB5mX3x7+p34+lbU3HV5cLHi0I9qCcbEwsGCFBPBiB6nEI8f9MwMgebhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuehAw++eSTuPnmm+17t34ZzfqFNO1Xvz7A+6vt4eNz78UDVa7DFwvTUK3qkecXWR2oJxsTCwYIUE8GIHqcQjx/0zAyB5uGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56EDPbs2RMLFiyw7/2ee+7BmDGhh1brvHJygCZnAQd+tUePTpmEt07uivVL0u22/AL1lE+C7yYIUE8mKHqbQzx/0zAyx5qGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56EC2ZlZaFChQo4ePCgfe8rV65E27Zt7bpSYfNnQI9LpCHnHbUOHbvVwp3D5OcXWZ2oJwkVKzESoJ5iBOjDcPH8TcPIHHAaRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrngSLrhlyxacccYZ0n3/8ssvqFSpktQWdeWhB4GZU+zuX2fWwTnV38Ky8alodoH8/CKrE/Vko2LBAAHqyQBEj1OI528aRuZg0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk3DBZ555BjfeeKN93+eeey4++OADu65UyM0FWl0A/Py9PWxa9lCMOXYwvn89HSVL2s12gXqyUbBggAD1ZACixynE8zcNI3OwaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniSbhgjx49sHDhQvu+R48ejbFjx9p1pcK2bUDnltKQ1qVXoso5p+L5J8KfX2R1pJ4kXKzESIB6ihGgD8PF8zcNI3PAaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniSaigtZblypVDRkaGfd+rVq1CmzZt7LpS4b57gIVP20P+l1UZpx/7IR7ql4obrgl/fpHVkXqycbFggAD1ZACixynE8zcNI3OwaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniSajg+vXr0bRpU/ueU1NTsW/fPpQtW9Zui7pw6BBwQT0g64j59Hj2bbiz2iBsei4NNU9IiZiKeoqIhY2aBKgnTXA+DhPP3zSMzIGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonoYITJkzAyJEj7Xtu3749Xn/9dbuuVFi7Fhh4tT0kOzcFZ1TYgArVqmD9kshfR7M6U082MhYMEKCeDED0OIV4/qZhZA42DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8CRVs0aIF3nnnHfuep0yZgsGDB9t1pcKc54AJR8ynjRnnoNVxL2L0VSm47d+Rv45m5aeelCizcyEEqKdCAMVBWDx/0zAytyA0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPEkTHDv3r2oXLmydL8bN25EgwYNpLaoKw+MB2Y/ZndflnEVrj3uIax7PA1n1Iv8dTSrM/VkI2PBAAHqyQBEj1OI528aRuZg0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFkzDBV155BZdffrl9vxUqVMCePXuQnu789TG7c6TC4IHA6pftyFPZgzG51lB88Vo6Qo9GcnxRT45oGNAgQD1pQPN5iHj+pmFkDj4NI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzwJE7z11lthfQUt/9W3b18888wz+VW199xcoFM74JvP7XF34wHk9OqBsaOdv45mdaaebGQsGCBAPRmA6HEK8fxNw8gcbBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueBIimBsyeGrVqoWdO3fa9zt//nz07NnTrisVnp8HjL1DGnJdsTno+8RFaH6By8eLQiOoJwkbKzESoJ5iBOjDcPH8TcPIHHAaRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrngSIrh9+3acfPLJ0r1a5tHxxx8vtUVVCT33CL07AtanjP557c8uiQbVPsXWN45C8eL5rZHfqafIXNiqR4B60uPm5yjx/E3DyBx5GkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654EiI4c+ZMWF9By3/Vr18fn332GVJSnB9Ond9Xes/MBC46F9j3s9TcL/1ZlGjfCo9PdP86mjWIepLQsRIjAeopRoA+DBfP3zSMzAGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonIYJdu3bF4sWL7XsdNWoUxo0bZ9ejLqx/D7ixm9R9WvZQjK42GIvvSUXri9y/jmYNpJ4kfKzESIB6ihGgD8PF8zcNI3PAaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniifvg/v37UbFiReTk5Nj3unr1arRu3dquR1WwvoJ2/TXAh2vt7t9m1kKjY99CyfRUfBv6dbQSJeyQY4F6ckTDgAYB6kkDms9DxPM3DSNz8GkYmWMpZRIFS8NIQsOKBgFuUhrQOMSRAPXkiIYBRQLUkiIwdnclQD254on74LJly9CpUyf7PouHHjK0b98+lCpVym6LqrAk9AmluwZLXSfnjML/Vb0JN7RIwUP3Ff51NGsw9SQhZCVGAtRTjAB9GC6ev2kYmQNOw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVP3Af/9a9/4amnnrLv87rrrsOsWbPsetSFlhcAPx/5lbW9WeXRqPI72J9eHq+MTy3019Hyr0M95ZPguwkC1JMJit7mEM/fNIzMsaZhZI6llEkULA0jCQ0rGgS4SWlA4xBHAtSTIxoGFAlQS4rA2N2VAPXkiieugxkZGahUqRIOHjxo36f1LKMuXbrY9agLF50H7PnB7j476yYMOXYUyhcDtoe+jlYs9B7Ni3qKhhL7REuAeoqWVNH1E8/fNIzMrQMNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxxHVy7di1atmxp36P1q2h79+7NM5HsxmgLD4wHZj9m9/5fVmWcXu1DDLg4FePujO7raNZg6slGyIIBAtSTAYgepxDP3zSMzMGmYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonroNDhw7Fww8/bN9jx44d8corr9h1pcLWrUAX+UHZp5b/CM89WhXnNir819Hyr0U95ZPguwkC1JMJit7mEM/fNIzMsaZhZI6llEkULA0jCQ0rGgS4SWlA4xBHAtSTIxoGFAlQS4rA2N2VAPXkiidug9bX0Y499lj8+uuv9j0+99xz6N27t11XKny6CejVQRrStNqneGfVMUiN3i/iJ4wkgqzESoB/n2Il6P148fxNw8gcbxpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueOI2uG7dOlx44YXS/cVyWMt5/HGkTrvfzrct82QsGbAaI4ZE/3U0azD1ZCNkwQAB6skARI9TiOfvWP4GeXybCZeehpFHSyYKloaRR5ADlJabVIAW24epUk8+QA7IJailgCy0T9OknnwCbfgyw4YNw+TJk+2sHTp0wPLly+26amF/284ot2uDPWxm1kBc+PpInFgnxW6LpkA9RUOJfaIlQD1FS6ro+onnbxpG5taBhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueuAxmZmaievXqeQ+4zr/BZ599Fn369Mmvqr1v3IicazoiFbn2uPtqPI+7V7aw69EWqKdoSbFfNASop2goFW0f8fxNw8jcWtAwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxROXwXfffRfNmzeX7k37oBZ62HVO90uRmvWXnS8jNwUv3/kluvUqY7dFW6CeoiXFftEQoJ6ioVS0fcTzt/bfoaKdQlxenYaRR8siCpaGkUeQA5SWm1SAFtuHqVJPPkAOyCWopYAstE/TpJ58Am3wMrfffjsmTZpkZ7zkkkvw2muv2fWoC9nZwMUh4+mn76Qhs7MHovOGUShXTmqOqkI9RYWJnaIkQD1FCaoIu4nnbxpG5haChpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueuAtmZWXlfR1tz5499r3NmjUL1113nV2PurD+PeDGblL3NRntsbTzNEx9oITUHm2FeoqWFPtFQ4B6ioZS0fYRz980jMytBQ0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPHEXfO+999CsWTPpvv73v/+hWrVqUltUlaG3ACtftLt+lXkSLqj2Ol6aWBLNLki121UK1JMKLfYtjAD1VBihoo+L528aRubWg4aROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnrgLDh8+HA888IB9X+3atcOKFSvsetSFAweAJvWAnNDX0v55jcFEvHBCD3z+ajpS9fwiUE/5NPluggD1ZIKitznE8zcNI3OsaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniiaug9XW0GjVqwDqU5b9mzpyJ66+/Pr8a/fvroWce3Xaj3d960HXdSp/i1qsrYMjNaXa7aoF6UiXG/m4EqCc3OvERE8/fNIzMrQkNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxxFXz77bdx0UUXSfe0e/duHHvssVJbVJXHHwWmTbC7rs9ogY7HzcHnC9NQrWqK3a5aoJ5UibG/GwHqyY1OfMTE8zcNI3NrQsPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT1wFb775Zjz55JP2PbVv3x6vv/66XY+6kJOD3MsuRsp3W+0hizJ7Y0WHcZjxsP6ni6xk1JONlAUDBKgnAxA9TiGev2kYmYNNw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVP3AT379+PypUrIyMjw76nBQsWoHv37nY96sKaN4FB10rdb05/Br2nt0OT8zQfXvRPNupJwspKjASopxgB+jBcPH/TMDIHnIaROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnrgJvvDCC5I5VKxYMezduxflypVTu8fQp4vQoTWwc5s97tvMWuh+6lv4z8vFtR92nZ+MesonwXcTBKgnExS9zSGev2kYmWNNw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVP3AQ7duyI5cuX2/fTv39/PPXUU3Y96sJ/3gf6XiV1H5g2HY3uaI8bront62hWUupJQstKjASopxgB+jBcPH/TMDIHnIaROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnrgI7ty5EzVr1pTu5a233gp7ALbUwakyfiww9wk7+nVmHZxffQ2+eqUYyit+WMlOIhSoJwEGizEToJ5iRuh5AvH8TcPIHG4aRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrnjiIjh+/HiMGjXKvpdq1arBMpGsr6WpvnJbNUXKTzvsYQ/njMSubjdj0r2xf7rISko92WhZMECAejIA0eMU4vmbhpE52DSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8RR50Fof69NF1kEs/2UZSCNGjMivRv/+1Xbg8ouk/m1Kr8CU2fVR//QUqV23Qj3pkuO4SASop0hU4qtNPH/TMDK3NjSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8RR5cOnSV3DFFZdL96H7b9zc24ci5bWFdq69WeXR74JP8fKz6p9UspMUKFBPBYCwGhMB6ikmfL4MFs/fNIzMIadhZI6llEkUrO5mKiVkJdAEuEkFevmNT556Mo40sAmppcAuvScTp548wWos6aWXXorXX3/dzte9e3csWLDArkdd+O475F4a+joacu0hU3NGoP4TA9H6olS7LdYC9RQrQY4XCVBPIo34LIvnbxpG5taIhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueIg1u27YNp5xyinQPq1atQps2baS2Qiu5IZOo77XAB2vsrody0nF5rU+w8tWjkWrOL+IzjGzCLJggwL9PJih6m0M8f9MwMseahpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueIg1ee+21mDNnjn0PderUwZdffon09HS7LarC2reAgddIXZ/KHoyj7rsNV3cz6BaFrkA9SZhZiZEA9RQjQB+Gi+dvGkbmgNMwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxVNkwT179qBKlSrS9adMmYLBgwdLbYVWQg/NxsXNgF92211/zqqIi6q/j49fK4tSpexmIwXqyQhGJvmHAPUU/1IQz980jMytFw0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPEUWHDp0KB5++GHp+lqHsSmTgacfkvIMSnsSNftfitv+nSa1m6hQTyYoMkc+Aeopn0T8vovnb62/UfE7tSK9MxpGHuEXBUvDyCPIAUrLTSpAi+3DVKknHyAH5BLUUkAW2qdpUk8+gVa4jLUmlStXxoEDB6RRudaziFRe27cBnVsBwriPMs5D++MW4otF6aFrpKhki6ov9RQVJnaKkgD1FCWoIuwmnr9pGJlbCBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueIokaP0KWs+ePaVrb9q0CWeddZbUVmjl5huBda9J3Zoe9RbOb3ciHrrP/KeLrAtRTxJuVmIkQD3FCNCH4eL5m4aROeA0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPH4HszOzkaDBg2wZcsW+9rdunXDwoUL7XrUhfrHhz5dlCN1P+aYr7FhdgnUqWX+00XWhagnCTcrMRKgnmIE6MNw8fxNw8gccBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueHwPLl++HB07dpSu+8EHH+Dcc8+V2qKq1DsurNvjZy/CwLlNwtpNNVBPpkgyj0WAeop/HYjnbxpG5taLhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyseX4M5OTlo1qwZ3n//ffu6bdu2xYoVK5CSoviJoF27gLbhJtM3T32AOs1q2PlNF6gn00SDnY96iv/1F8/fNIzMrRcNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzy+BteuXYuWLVtK11yzZk1Ym9TBoZI9fgLS5j4qRWfWfRI3vCx/eknqYKBCPRmAyBQ2AerJRhG3BfH8TcPI3DLRMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csXjW9D6BbRLL70079NE+Rc977zzsH79eqSmpuY3Rff+55/IaFwfxXMP2/1nZ/0LDZfciTPqKX5Syc4QXYF6io4Te0VHgHqKjlNR9hLP3zSMzK0EDSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8vgWt5xSdf/750vWWLl2KTp06SW3RVLLnzEXahOF2V+ux18Mavo+H55xgt3lVoJ68IhvMvNRT/K+7eP6mYWRuvWgYmWMpZRIFS8NIQsOKBgFuUhrQOMSRAPXkiIYBRQLUkiIwdnclQD254vEteMUVV8AyiPJfp512Gj777DOkp6fnN0X3fuAA/mrSCCVyDtr938poh3IvPINGZyt+UsnOEH2BeoqeFXsWToB6KpxRUfcQz980jMytBg0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPL4EP/roIzRu3Fi61oIFC9C9e3epLZpK1v+NQ/qCaVLXe056GWNebhx6cLbU7EmFevIEa2CTUk/xv/Ti+ZuGkbn1omFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKx5dg165dsXjxYvtadevWxZYtW1C8eHG7LarCd98h59KmSEWu3X1VRgccvegpNGzgg1sUuir1ZKNnwQAB6skARI9TiOdvGkbmYNMwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxeN5cNOmTTj77LOl68ybNw+9evWS2qKpZIybiOLzH7G7ZuSmYETj9Zg82/tnF+VflHrKJ8F3EwSoJxMUvc0hnr9pGJljTcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVj+dByxh6/vnn7evUrl0bW7duVf90UehX1g40aISyWT/ZuWZlDcB5S0fh9FP9+XSRdWHqycbPggEC1JMBiB6nEM/fNIzMwaZhZI6llEkULA0jCQ0rGgS4SWlA4xBHAtSTIxoGFAlQS4rA2N2VAPXkisfTYKRnF82ePRvXXnut8nUP/GcLyvZtJ427//zVGDXjNKnN6wr15DXhYOWnnuJ/vcXzNw0jc+uVtIZRSpRP07N+CeKll14yR/SfTKJgaRgZxxu4hNykArfknk6YevIUb6CSU0uBWm7PJ0s9eY7Y8QKR/t38559/omTJko5jIgYOHwYanSiFdmSegOwV7+HEOt7/Mpp4YepJpMFyrASop1gJej9ePH/TMDLHm4YRDSNzamImzwhwk/IMbSATU0+BXHZPJk0teYI1sEmpp6JZ+rFjx+Kuu+6SLm79Kpr162iqr4Pjp6DM3AelYW+dMAwtXx8qtflRoZ78oByca1BP8b/WNIy8WaOkN4zuvPNO9OnTx5FeqVKlcNxxxznGdQOiYPkJI12KHJdPgJtUPgm+myBAPZmgyBwWAWqJOjBJgHoySTP6XJE+XfTDDz+o//s49OmiQ43ORGkclC7+01NvoWqzk6U2PyrUkx+Ug3MN6in+11o8f/MTRubWK+kNo6lTp+KWW24xRyzKTKJgaRhFCY3dHAlwk3JEw4AGAepJAxqHRCRALUXEwkZNAtSTJrgYhn388cc455xzwjLkhh5crfr636OLcOyTQ6RhP5Q6BzU+Wiq1+VWhnvwiHYzrUE/xv87i+ZuGkbn1omFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKx3jQMoU6dOiA119/Xcq9Y8cO1KxZU2orrJKbk4v/ndEC1fGN3fW37KOA97eiYkX/fhnNvnioQD2JNFiOlQD1FCtB78eL528aRuZ40zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFYzy4bt06XHjhhVLekSNH4v7775faoqlsu28BTl44TOr6eueFuGRsM6nNzwr15Cft5L8W9RT/ayyev2kYmVsvGkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654jAZzcnLQsmVLWKZR/qtevXrYuHEjihUrlt8U1XvWp1uQ3fNSlEjJtvt/n10LVTa9ixIli+bTRdaNUE/2crBggAD1ZACixynE8zcNI3Owk94wOu+882B95Pazzz7L2wBPPPHEvA2yZ8+eaNy4sTmSBTKJgqVhVAAOq8oEuEkpI+MAFwLUkwschpQIUEtKuNi5EALUUyGADIaXLl2KK0K/FCy+rLZOnTqJTe7l73cCUycj9/VFKGgLfdhvARrf2tx9vMdR6sljwAFLTz3F/4KL528aRubWK+kNIzdUffv2xZQpU3DUUaHvWCu+LEG6vfbs2YP69evnddm+fTuOP/54t+6MkYArAWuTsh5Mab0aNWqEEiVKuPZnkATcCFBPbnQYUyFALanQYt/CCFBPhREyEz8c+jWzhg0b4ptvjjxvyPofrGvWrEFaWlpUF0n55GMU698DKTlHPlWUP3BFyX648N1RSE3Nbymad+qpaLgn61Wpp/hfWcskyn/+Gg0jc+uVtIZRmTJlcP311+Oiiy6C9ami0qVL49dff8V//vMfPPDAA/jxxx/zKFr/d2XRokVIT09XohrpJ0idEixevBiVKlVyCrOdBEiABEiABEiABEiABHwhsGTJEjz22GPStaz/gXrmmWdKbW6Vsybdj0o7/hvW5bOMBvjotjtR++TDYTE2kAAJkICXBKyz/lVXXZV3CRpG5kgnrWF04MABlC1bNiIpS0xdunTB2rVr8+LPPfccevfuHbGvUyMNIycybCcBEiABEiABEiABEohHAvv27UOPHj2QkZFh316LFi0wZswYRPtv25TMTDQf2hdpuTl2jj9yiuMZDMN7DS7DgP7f2u0skAAJkIBfBGgYeUM6aQ2jwnDt2rULtWrVQlZWFho0aJD3kL/CxohxfiVNpMGy1wT4MVivCQcrP/UUrPX2crbUkpd0g5ebevJ+zUeNGoXJkyfbF7JMIus5n3Xr1rXbCiukbP4MxfvIzz86tfxH+KXEMfhgVg6OO7awDP7EqSd/OAflKtRT/K80v5LmzRoF1jCycFqfKpo7d24eWcsAqly5sjHK4kO3+NBrY1gDm8japNavX583/yZNmvAZRoFVgpmJU09mODILf4WIGjBLgH+bzPIsmG3btm049dRT834MJj82fPhwTJgwIb8a3fuc2cCEUXbf7Zl1cW711bivVwoG9Y/uGUj2YA8L1JOHcAOYmnqK/0UXz9/8Spq59Qq0YWRtkCNHjsyjuWXLFlg/J2rqJQqWhpEpqsHNw00quGvvxcypJy+oBjMntRTMdfdq1tSTV2SRZxJZX0V74YUX7ItYz/u0/o169NFH223RFDLuHYviLzxhd12WcRXGnPYQ3l+UHvofWnZzkReopyJfgqS6Aeop/pdTPH/TMDK3XoE2jCZOnIgRI0bk0aRhZE5UzGSeADcp80yDnJF6CvLqm507tWSWZ9CzUU/eKeCdd96B9awi8WU9+HrgwIFiU+Hl0POLfm94Hsrn/GT3nZ31L9SeORotmhbxz6LZd/R3gXoqAITVmAhQTzHh82UwDSNvMAfaMLr22msxZ86cPLKmXUhRsPyEkTfiDVJWblJBWm3v50o9ec84KFegloKy0v7Mk3ryhrP1vM6mTZtiw4YN9gVOOukkbN68GSVLlrTboin8/NBzqDLz70/n5/efdvocDFjUKr8aN+/UU9wsRVLcCPUU/8sonr9Nn+3jf/be3WFgDSProde1a9dGZuj/lJx11lnYtGmTUcqiYGkYGUUbyGTcpAK57J5NmnryDG3gElNLgVtyTydMPXmD99lnn8X1118vJX/55aW4/PJOUlthlZx9v+Nwk4YonXLY7rolswEqrV2G6tXj69NF1g1ST/YysWCAAPVkAKLHKcTzNw0jc7CT0jBau3YtmjdvjrS0yA/es35yr0uXLrD6Wa9Zs2bhuuuuyyub+o8oWBpGpqgGNw83qeCuvRczp568oBrMnNRSMNfdq1lTT+bJ7t27F9aniX7//Xc7ecuWLbF69WqkpqqZPF/1GYuTPjry7CIr4ZKur+LKexrYueOpQD3F02ok/r1QT/G/huL5m4aRufVKSsPo9NNPz/u/CtZXzho3bowax9VAiZIl8Ntvv+H999/HpEmTsHv37jyKHTt2xOLFi1G8eHFzVEOZRMHSMDKKNpDJuEkFctk9mzT15BnawCWmlgK35J5OmHoyj/fWW2/FlClTpMSfbvoUZ551ptRWWOW3tZtQfmAHiBbT2tzOaLLpsdC/oQsbXTRx6qlouCfrVamn+F9Z8fxNw8jceiWtYfTFF18USql///555lHZsmUL7avaQRQsDSNVeuxfkAA3qYJEWI+FAPUUCz2OFQlQSyINlmMlQD3FSlAev3HjRjRs2FBqHDZsWN6/faXGQiq5X3+NPzu1RWkc+SqaNWTTuHfQ4Io6hYwuujD1VHTsk/HK1FP8r6p4/qZhZG69ktIw+uijj/Cf//wn79NEW7duhfW8IusjuRUrVsQpp5yCCy+8EN27dVf+vysq2EXB0jBSIce+kQhwk4pEhW26BKgnXXIcV5AAtVSQCOuxEKCeYqEnj83Ozob11TPr19HyX5UqVcL27dthvUf9Cj0w+1CzFih94DtpyIdV+6DxmvultnirUE/xtiKJfT/UU/yvn3j+pmFkbr2S0jAyh0c/kyhYGkb6HDnybwLcpKgEkwSoJ5M0g52LWgr2+puePfVkjui8efNwzTXXSAmfe+459O7dW2orrHJoyWsofdeNUrf1WW1Q7/0ZKF8pXWqPtwr1FG8rktj3Qz3F//qJ528aRubWi4aROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnqiD1o+7WJ+otz5dn/9q0qQJ1q1b5/iDMPn9pPfcXPx4dhtUy9xqN2/NOBXfT12Giy8tbbfFa4F6iteVScz7op7if93E8zcNI3PrRcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT9RB61NEc+fOlfpbj2to1KiR1FZY5ctZ7+GUSd2kbk+eOhs3LW6DlBSpOS4r1FNcLkvC3hT1FP9LJ56/aRiZWy8aRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrniiCk6ePBnWg63F16BBg/DII4+ITe7l0CeL/nplJf4aMQjlUg/Zfb/LqomSb7+LqtXE30qzw3FXoJ7ibkkS+oaop/hfPvH8TcPI3HrRMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csVTaNB60HV6evhzhax/k1auXLnQ8XkdfvkFGDMaeGtZWP8PO0xF4weuCmuP1wbqKV5XJjHvi3qK/3UTz980jMytFw0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPIUGZ8yYgX79+kn9ateujW+++UZqc6wcOAB0bAPs+SGsyw7UwwmfLEdqieJhsXhtoJ7idWUS876op/hfN/H8TcPI3HrRMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csXjGty9ezfq1q2LQ4eOfIXMGvD777+jXLlyrmPt4KNTgCcftKv5hdVZnXD60vtR/dSK+U0J8U49JcQyJcxNUk/xv1Ti+ZuGkbn1omFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKxzGYG3rmkPWg63nz5kl93n33XTRt2lRqc6yEcuCi84C9u+wuWbkpGFTsabS6tx26XpEYzy2ybz5UoJ5EGizHSoB6ipWg9+PF8zcNI3O8aRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbnicQyuWLECl1xyiRQfNWoUxo0bJ7W5VrZvA65oKXXpXuIFlGh6PmY/kpYQv4om3XyoQj0VJMJ6LASop1jo+TNWPH/TMDLHnIaROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnojB/fv344wzzsDOnTvteK1atfDZZ5+hbNmydlthhYOPzkCZJ++2u+3Kqoomx3+Ajxako/IxKXZ7IhWop0Rarfi/V+op/tdIPH/TMDK3XjSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8UQMjhw5EhMmTJBi1ieO2rVrJ7W5VXJygG0Ne+DUzHfsbgsyr0P5x/8Pl1yceF9Fy58E9ZRPgu8mCFBPJih6m0M8f9MwMseahpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuesODHH3+Mc845R2rv06cPZs2aFfoKWfSfCpr/9G+46uEzUDwl9Byjf14zzpqNvvNDv5iWwC/qKYEXLw5vnXqKw0UpcEvi+ZuGUQE4MVRpGMUAz22oKFgaRm6kGIuGADepaCixT7QEqKdoSbFfYQSopcIIMa5CgHqKnpbF6oILLsDGjRvtQWXKlMFXX32FatWq2W2FFb7YkoGDnXvhnOLv212zQw+7PvjmVpQ79ii7LREL1FMirlr83jP1FL9rk39n4vmbhlE+ldjfaRjFzjBiBlGwNIwiImKjAgFuUgqw2LVQAtRToYjYIUoC1FKUoNgtKgLUU1SY8jpNnDgRI0aMkAY8++yzsD5hFO3r0MFcvHP+CLTLmSsN+bV+B1RaOF1qS8QK9ZSIqxa/90w9xe/a5N+ZeP6mYZRPJfZ3GkaxM4yYQRQsDaOIiNioQICblAIsdi2UAPV5a4vvAABAAElEQVRUKCJ2iJIAtRQlKHaLigD1FBUmfP755zjzzDORYz186J+X9cyi1157Damp0T9z6NXLZ6DDV0cedG2l+iO1Eo5aswaoXDk/dcK+U08Ju3RxeePUU1wui3RT4vmbhpGEJqYKDaOY8DkPFgVLw8iZEyPREeAmFR0n9oqOAPUUHSf2KpwAtVQ4I/aIngD1VDirzMxMtGzZEu+9957duVixYti6dSvq1KljtxVW2DBxDc55rjdEeykjNw2pL6xEev3TChueEHHqKSGWKWFuknqK/6USz980jMytFw0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPHnBRx99FLfccovU8fHHH8eAAQOkNrfKro0/okKv81EmNVPq9us9s1Gpa2I/6FqcEPUk0mA5VgLUU6wEvR8vnr9pGJnjTcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT94DrU877TRkZWXZHVu0aIE333wT6enpdptbIeOvXGw+5wY0ynlD6ra9/d2o+9BNUluiV6inRF/B+Lp/6im+1iPS3YjnbxpGkQjptdEw0uNW6ChRsDSMCsXFDoUQ4CZVCCCGlQhQT0q42NmFALXkAochZQLUkzOy7OxsXHLJJVi1apXdyXpe0ZYtW2CZSNG+Fly/Aj029JW6bz6mC85YOxVISZHaE71CPSX6CsbX/VNP8bUeke5GPH/TMIpESK+NhpEet0JHiYKlYVQoLnYohAA3qUIAMaxEgHpSwsXOLgSoJRc4DCkToJ6ckc2YMQP9+vWTOkyaNAnDhg2T2twq6x75BGdPuwpl0/6yu+3LKYeS6z5Aycrl7LZkKVBPybKS8TEP6ik+1sHtLsTzNw0jN1JqMRpGaryi7i0KloZR1NjY0YEANykHMGzWIkA9aWHjoAgEqKUIUNikTYB6iozO+ndkrVq1pGDjxo3x7rvvonjx4lK7U+X7eW+jyrhrUCLlyC+rWX1/Gj4TVa9t5zQsodupp4Revri7eeop7pYk7IbE8zcNozA82g00jLTRuQ8UBUvDyJ0Vo4UT4CZVOCP2iJ4A9RQ9K/Z0J0AtufNhVI0A9RTOy/oqWsHnE6WEvjq2ceNGnHXWWeEDIrT8sWk7SvVqibSUXCn608mXoeqSJ5Puq2j5k6Se8knw3QQB6skERW9ziOdvGkbmWNMwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHoKx9OyZUusXbtWCtx77724++67pTanSk7oA0X/O7M1jsvdKnX5qlJ7nLR6GlCihNSeTBXqKZlWs+jnQj0V/RoUdgfi+ZuGUWG0oo/TMIqelVJPUbA0jJTQsXMEAtykIkBhkzYB6kkbHQcWIEAtFQDCakwEqCcZ37fffos6derIjaHawYMHUbp06bD2sIY//8TnvSag3rZnwkKZH+9EsZJpYe3J1EA9JdNqFv1cqKeiX4PC7kA8f9MwKoxW9HEaRtGzUuopCpaGkRI6do5AgJtUBChs0iZAPWmj48ACBKilAkBYjYkA9XQEX1ZWFtq1a4c1a9YcaQyVevTogeeff15qi1j54Xsc6todpfd/FxY+3LonSj4yKaw92Rqop2Rb0aKdD/VUtPyjubp4/qZhFA2x6PrQMIqOk3IvUbA0jJTxcUABAtykCgBhNSYC1FNM+DhYIEAtCTBYjJkA9XQE4dSpUzFkyJAjDaFSt27dsHDhQqktYuWXX5DZsT2K/b47LLy/bkuUmxt6btFRR4XFkq2Bekq2FS3a+VBPRcs/mquL528aRtEQi64PDaPoOCn3EgVLw0gZHwcUIMBNqgAQVmMiQD3FhI+DBQLUkgCDxZgJUE9/I9y8eTMaNGiAHOsBRP+8zj33XKxbty70yKFCnjl06BCyu16JtB2b84fmvR/OScPGVuNxwWO9kvYh19KEQxXqqSAR1mMhQD3FQs+fseL5m4aROeY0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCegD9Dzx1q2rRp3q+g5cNKS0uDZSKddtpp+U2R3zMzkXPj9Uj98C0pvj2zLl5oPROjptVB6AfWAvOingKz1L5MlHryBXNMFxHP3zSMYkIpDaZhJOEwVxEFS8PIHNegZuImFdSV92be1JM3XIOYlVoK4qp7N2fqCRg9ejTuv/9+CfLjjz+OAQMGSG1SZf9+4LlZwIuhZxv9/L0U+iHrWNxxxmuYObcKSpaUQklfoZ6Sfol9nSD15CturYuJ528aRloIIw6iYRQRS+yNomBpGMXOM+gZuEkFXQFm5089meUZ5GzUUpBX3/zcg64n6wHXrVu3lsC2b98ey5cvh/Upo4iv0KeKcGkrYPc3YeHfssugT7WVmLGoFipXDtBHi/4hEXQ9hQmCDTERoJ5iwufLYPH8TcPIHHIaRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCQRZT9a/G88880xYh5z8V+nSpfHFF1/ghBNOyG8Kf1+7Fhh4dVj7n6FnFvU4ahnGzT4T9U8PnllkAQmynsIEwYaYCVBPMSP0PIF4/qZhZA43DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSCqifr4dZdu3bFkiVLJD4vvvgirrzySqktrDJ6BPDyHKl5R2ZNDCr7KG4efzYubZsqxYJUCaqegrTGfs6VevKTtt61xPM3DSM9hpFG0TCKRMVAmyhYGkYGgAY8BTepgAvA8PSpJ8NAA5yOWgrw4nsw9aDq6Yknngh7RtG//vUvTJs2LfSQapdPB4WMppzG9ZB6OPQMo39eyzO6oPdxD+GurqkYOtDha2z5nZP8Pah6SvJlLbLpUU9Fhj7qC4vnbxpGUWMrtCMNo0IR6XUQBUvDSI8hRx0hwE3qCAuWYidAPcXOkBn+JkAtUQkmCQRRT+vXr0ezZs2Qm5trozzllFOwYcMGlCtXzm6LVMhYtRbFh8hfRzu77Ho0alID0yelITW4Hy7KwxVEPUXSCdvMEKCezHD0Mot4/qZhZI40DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSCpqddu3bh7LPPxp49e2wuqSGXxzKLGjVqZLdFKuS8uAQ5d92C9JQjRtNXmSdhQOM3sfSZdJQqFWlUsNqCpqdgra7/s6We/GeuekXx/E3DSJWec38aRs5sYoqIgqVhFBNKDg4R4CZFGZgkQD2ZpBnsXNRSsNff9OyDpKfDhw/D+gW0t99+W8I4ffp03HjjjVKbVMnORu4DE5Ayd5rUbFWmlxiDLqtvxNGVXL7GFjYqeRuCpKfkXcX4mRn1FD9r4XQn4vmbhpETJfV2GkbqzKIaIQqWhlFUyNjJhQA3KRc4DCkToJ6UkXGAAwFqyQEMm7UIBEVP1tfPhg0bhocfflji1L9/fzz55JPuzy2K8JBrK8n7Wa1w7GszUevEYlLOIFeCoqcgr7Gfc6ee/KStdy3x/E3DSI9hpFE0jCJRMdAmCpaGkQGgAU/BTSrgAjA8ferJMNAAp6OWArz4Hkw9KHp6/vnn0atXL4lg48aNsXbtWpQuXVpqlyrbtgGdW0pNVmV29kCc+fwdoa+3pYfFgtwQFD0FeY39nDv15CdtvWuJ528aRnoMI42iYRSJioE2UbA0jAwADXgKblIBF4Dh6VNPhoEGOB21FODF92DqQdDThx9+iAsuuADZoa+W5b/Kly+PTZs2oVatWvlNEd9/GPoQaqycbMcyclMwMu0RtJt6Bdq2CvgTrm0qRwpB0NOR2bLkNQHqyWvCsecXz980jGLnmZ+BhlE+CcPvomBpGBmGG8B03KQCuOgeTpl68hBuwFJTSwFbcI+nm+x62rFjB6xPEu3du1ciuWrVKrRp00ZqK1jZOWUJqk2/BcWFh1w/kzUIaXffjuuvTivYnfUQgWTXExfZXwLUk7+8da4mnr9pGOkQjDyGhlFkLjG3ioKlYRQzzsAn4CYVeAkYBUA9GcUZ6GTUUqCX3/jkk1lP+/btQ4sWLbB582aJ24MPPojbbrtNapMqWVn47Y5xqLhyutRsVWZeugLXP3BG6JlHYSE2hAgks564wP4ToJ78Z656RfH8TcNIlZ5zfxpGzmxiioiCpWEUE0oODhHgJkUZmCRAPZmkGexc1FKw19/07JNVTxkZGejSpQuWL18uIevbty+sX0VLTXX4Otlvv+HwDTei5Lb3pXFW5ZOje6DB2odCY8NCbPiHQLLqiQtcNASop6LhrnJV8fxNw0iFnHtfGkbufLSjomBpGGlj5MB/CHCTohRMEqCeTNIMdi5qKdjrb3r2yagn6xfRBg8ejEcffVTC1apVqzwDqVSpUlK7XfnuO2T3ugpp+3bbTfmFNccMQIs3RiC9BL+Kls8k0nsy6inSPNnmDwHqyR/OsVxFPH/TMIqFpDyWhpHMw1hNFCwNI2NYA5uIm1Rgl96TiVNPnmANZFJqKZDL7tmkk1FPU6dOxZAhQyRmp5xyCt59910cc8wxUrtd2bgROTd0Q2rGIbvJKvyVm4pZJzyGG165HMWLSyFWIhBIRj1FmCabfCJAPfkEOobLiOdvGkYxgCwwlIZRASCmqqJgaRiZohrcPNykgrv2XsycevKCajBzUkvBXHevZp1senr55ZfRuXNnCZf1i2jWL6XVrVtXas+r5OQAc2Yj98G7kZIbKguvH7OOwcST52HcwvooXVoIsOhIINn05DhRBnwhQD35gjmmi4jnbxpGMaGUBtMwknCYq4iCpWFkjmtQM3GTCurKezNv6skbrkHMSi0FcdW9m3My6entt9+G9bWzHMsE+udlPavIam/WrFl+k/x++1DgtYVyW6j234x6GH3qHMyaWxUVyoeF2eBAIJn05DBFNvtIgHryEbbmpcTzNw0jTYgRhtEwigDFRJMoWBpGJogGOwc3qWCvv+nZU0+miQY3H7UU3LX3YubJoqdPP/0U559/Pg4fPixhmj9/Pnr27Cm12ZUffgDanWdX8wtrMy7GqJMew8vPlUGVyvw5tHwu0bwni56imSv7eE+AevKecaxXEM/fNIxipXlkPA2jIyyMlkTB0jAyijaQybhJBXLZPZs09eQZ2sAlppYCt+SeTjgZ9PT111/jggsuwJ49eyRWEyZMwPDhw6U2u7JvH3I6XozUX+UHXE/PugWP1R6C12YUR43jaBbZvKIsJIOeopwqu/lAgHryAXKMlxDP3zSMYoQpDKdhJMAwWRQFS8PIJNlg5uImFcx192rW1JNXZIOXl1oK3pp7OeNE19OPP/6I5s2b46uvvpIwDR06FJMmTUJKSgHTJ/QLalj6MnLuG47Uvw5KY7ZmnIrOJ63EG0+n4fgaBcZJPVlxIpDoenKaF9uLhgD1VDTcVa4qnr9pGKmQc+9Lw8idj3ZUFCwNI22MHPgPAW5SlIJJAtSTSZrBzkUtBXv9Tc8+kfW0L/QpobZt2+Y90Frk0rt3b8ycORPp6eli89/lO0cCLz0X3h5qubfk47ju5ctR83iaRREBRdGYyHqKYnrs4jMB6sln4BqXE8/fNIw0ADoMoWHkACbWZlGwNIxipcnx3KSoAZMEqCeTNIOdi1oK9vqbnn2i6mn//v244oor8NZbb0lILrnkEixZsgQlS5aU2vMqu0NfP7u4cVj7wZxieLzk/ei+tCdqnkCzKAyQQkOi6klhiuzqIwHqyUfYmpcSz980jDQhRhhGwygCFBNNomBpGJkgGuwc3KSCvf6mZ089mSYa3HzUUnDX3ouZJ6KeDhw4gCuvvBKrV6+WkJx77rlYtWoVypUrJ7XnVUIPw86+/FKk/fClFFuZ0Qnja4zBrGeronZNmkUSHI1KIupJY5oc4hMB6skn0DFcRjx/0zCKAWSBoTSMCgAxVRUFS8PIFNXg5uEmFdy192Lm1JMXVIOZk1oK5rp7NetE09Mff/yBLl264I033pCQnHLKKXj77bdRtWpVqT2vEnrOUdb1fZC+c4sUO5STjrNO+Born0pDnVo0iyQ4mpVE05PmNDnMJwLUk0+gY7iMeP6mYRQDyAJDaRgVAGKqKgqWhpEpqsHNw00quGvvxcypJy+oBjMntRTMdfdq1omkp71796Jy5cphKOrUqYO1a9fi+OOPD4th4yfI6Xc1Ug/vl2KWWTSg4ku4a97ZOLE2zSIJTgyVRNJTDNPkUJ8IUE8+gY7hMuL5m4ZRDCALDKVhVACIqaooWBpGpqgGNw83qeCuvRczp568oBrMnNRSMNfdq1knip6+//57nHDCCWEYateunfcco5o1a4bF8NqryL3jJoT+4S3F9meXxK2VF+Pu+Q34gGuJTOyVRNFT7DNlBj8IUE9+UI7tGuL5m4ZRbCzF0TSMRBoGy6JgaRgZBBvQVNykArrwHk2bevIIbADTUksBXHQPp5wIerJ+Da1ixYoRKXz77beoVatWeOzXX5FzYUOk5mRKsR2ZJ2BUzTl4aM6JOLYaP1kkwTFQSQQ9GZgmU/hEgHryCXQMlxHP3zSMYgBZYCgNowJATFVFwdIwMkU1uHm4SQV37b2YOfXkBdVg5qSWgrnuXs063vX0a8j4OfrooyNOf8uWLahXr17E2LcvfIDa914pxaxPFvU69WM8O6M8jjmaZpEEx1Al3vVkaJpM4xMB6skn0DFcRjx/0zCKAWSBoTSMCgAxVRUFS8PIFNXg5uEmFdy192Lm1JMXVIOZk1oK5rp7Net41pP177rLLrsMH374Ydj0x48fjxEjRoS1IycH3901A8e/fA9SC0QXlxmGNquGokL5AgFWjRGIZz0ZmyQT+UaAevINtfaFxPM3DSNtjGEDaRiFITHTIAqWhpEZpkHOwk0qyKtvfu7Uk3mmQc1ILQV15b2Zd7zqadeuXWjfvj2sTxEVfE2ZMgWDBw8u2Azs34+feg5B1R0rw2OhlsN3P46S3a+IGGOjGQLxqiczs2MWvwlQT34TV7+eeP6mYaTOz2kEDSMnMjG2i4KlYRQjTA4HNymKwCQB6skkzWDnopaCvf6mZx+Pevpux3doc3EbfPXVV9J0K1WqhE8//RQ1atSQ2q1K7n//iz969UbZzB/DYlm5Kci9bgiK3TYUSC34uaOw7myIgUA86imG6XBoEROgnop4AaK4vHj+pmEUBbAou9AwihKUajdRsDSMVOmxf0EC3KQKEmE9FgLUUyz0OFYkQC2JNFiOlUC86Wn79u1o3bo1rF9FE1/nnHMOXn31VVSpUkVszivnLH0FOaMGIB3yr6HlhKIfVO2Hc+YMQLHjqoaNY4N5AvGmJ/MzZEY/CVBPftLWu5Z4/qZhpMcw0igaRpGoGGgTBUvDyADQgKfgJhVwARiePvVkGGiA01FLAV58D6YeT3ratGkT2rZtiz179kgzbd68OV5++WVYnzAq+Mqc+zyKjb+tYDN+zT4Kb146C10mNeGHisLoeNcQT3rybpbM7BcB6skv0vrXEc/fNIz0ORYcScOoIBFDdVGwNIwMQQ1wGm5SAV58D6ZOPXkANaApqaWALrxH044XPa1duxbt2rVDRkaGNFPLQFq0aBHKlSsntVuVP5+YhVKP3RnWvjHjHHxz+1Po0r9aWIwN3hKIFz15O0tm94sA9eQXaf3riOdvGkb6HAuOpGFUkIihuihYGkaGoAY4DTepAC++B1OnnjyAGtCU1FJAF96jaceDnhYvXozu3buHfuDM+hLZkdfll1+O+fPno3Tp0kca/yn9dv80VJw3Lqx9bvZNqPLIiNAnlYqHxdjgPYF40JP3s+QV/CJAPflFWv864vmbhpE+x4IjaRgVJGKoLgqWhpEhqAFOw00qwIvvwdSpJw+gBjQltRTQhfdo2kWpp9zcXEybNg3//ve/w2bXp08fPPnkkyhZsmRYbOeYGThh8d1h7dMwCufOvRnnnM0HW4fB8amhKPXk0xR5GR8JUE8+wta8lHj+pmGkCTHCMBpGEaCYaBIFS8PIBNFg5+AmFez1Nz176sk00eDmo5aCu/ZezLyo9GR9mmjMmDEYO3Zs2LRuv/12jB8/HmlpaX/HrE8ePfQAsOo1YNfXYf2thseK/R/avXg96p6YEjHORn8IFJWe/Jkdr+I3AerJb+Lq1xPP3zSM1Pk5jaBh5EQmxnZRsDSMYoTJ4eAmRRGYJEA9maQZ7FzUUrDX3/Tsi0JP1nOKrE8VPf3002HTmTx5MoYMGYKUFMH4mT8XGDc8rG9+wzNHT8TlS65G5WOEMflBvvtKoCj05OsEeTFfCVBPvuLWuph4/qZhpIUw4iAaRhGxxN4oCpaGUew8g56Bm1TQFWB2/tSTWZ5BzkYtBXn1zc/dbz0dOHAAvXv3xtKlS6XJWAbRnDlzcPXVV0vtoQcbIeei0C+d/fK93P5PbWnt0CeLFt8Q+upaxDAbfSbgt558nh4v5zMB6sln4BqXE8/fNIw0ADoMoWHkACbWZlGwNIxipcnx3KSoAZMEqCeTNIOdi1oK9vqbnr2ferL+nda5c2esX79emkaxYsWwbNmyvF9JkwLZ2Tg4YBjKvLtIas6vfHjmHWg0bzBS+ciifCRF/u6nnop8srwBzwlQT54jjvkC4vmbhlHMOO0ENIxsFGYLomBpGJllG8Rs3KSCuOrezZl68o5t0DJTS0FbcW/n65eevv32W1xyySX48ssvpQlVqFABb7zxBho3biy1448/8GuPm1Dp27Vye6i2J6sC9nS6Hac/0Aeh766FxdlQdAT80lPRzZBX9pMA9eQnbb1riedvGkZ6DCONomEUiYqBNlGwNIwMAA14Cm5SAReA4elTT4aBBjgdtRTgxfdg6n7o6bNPP0Pbdm1hHSbEV61atbBy5UqcfPLJYjNyfvwJv13WA0f/uU1qtyoTiz2IdnN6osEZNIrC4MRBgx96ioNp8hZ8IkA9+QQ6hsuI528aRjGALDCUhlEBIKaqomBpGJmiGtw83KSCu/ZezJx68oJqMHNSS8Fcd69m7bWe3n77bbRv3x6HDx+WptCwYcO8r6FVr15daj/0yRfIvKYryqf8JrVblT05VZC5/F1UP7FMWIwN8UHAaz3Fxyx5F34RoJ78Iq1/HfH8TcNIn2PBkTSMChIxVBcFS8PIENQAp+EmFeDF92Dq1JMHUAOakloK6MJ7NG0v9bRgwQL07Nkz7M7btm0LK1axYkUptvuFdah4T2+USsmS2q3K52U74MTZo1DylFphMTbEDwEv9RQ/s+Sd+EWAevKLtP51xPM3DSN9jgVH0jAqSMRQXRQsDSNDUAOchptUgBffg6lTTx5ADWhKaimgC+/RtL3QU25uLipVqoR9+/aF3bX1K2hPP/00SpUqJcU23/Mi6i26BQWfX/1tZi1sHLIAnW8+no8rkojFZ8ULPcXnTHlXfhCgnvygHNs1xPM3DaPYWIqjaRiJNAyWRcHSMDIINqCpuEkFdOE9mjb15BHYAKallgK46B5O2bSerK+e9evXD/PmzQu766FDh2LixIlIT0+3Y3/9BbxxwyJ03DTEbssvbMo6H7kzZuLsZuXzm/ge5wRM6ynOp8vb85gA9eQxYAPpxfM3DSMDQP9JQcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysBk3qy/h1mfQVtzZo1YdccN24cRo4cGfqU0JGHVX+3MxcvXf0Shvw6KKz/u8W74uTlD6DKccXDYmyIXwIm9RS/s+Sd+UWAevKLtP51xPM3DSN9jgVH0jAqSMRQXRQsDSNDUAOchptUgBffg6lTTx5ADWhKaimgC+/RtE3p6bPPPsPll1+OHTt2hN1py5Ytw0yk5StyMGbsz1j/a2OUSMmRxrxTawjOW3Ibipc4Yi5JHViJWwKm9BS3E+SN+UqAevIVt9bFxPM3DSMthBEH0TCKiCX2RlGwNIxi5xn0DNykgq4As/OnnszyDHI2ainIq29+7ib09Morr6Br167IyMiQbjAtLQ0rVqxAmzZt7Hbrx9LGTMzG9Ldy8czuUehSTP7q2rYWd+DkabeADyyykSVUwYSeEmrCvFlPCVBPnuI1klw8f9MwMoI0LwkNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBGLRU05ODh588EGMGDEi7BoNGjTAkiVLULt2bTv29be56HN7Nnb+uB8Tf56MnsVm2TGr8EeTLjhq+lSaRRKVxKrEoqfEminv1g8C1JMflGO7hnj+pmEUG0txNA0jkYbBsihYGkYGwQY0FTepgC68R9OmnjwCG8C01FIAF93DKevq6Y8//sDNN9+MuXPnht1dt27d8n4JrVy5cnmxkK+E+YtyMPSJbPTduwTDs+5EhbRDYeOwcAVQ/4zwdrYkDAFdPSXMBHmjvhKgnnzFrXUx8fxNw0gLYcRBNIwiYom9URQsDaPYeQY9AzepoCvA7PypJ7M8g5yNWgry6pufu46evv/+e1x11VXYsGFD2A3dc889uPPOO2F9Hc167dmTi8FjsvHrhs8x6ffhqF98c9iYvIbzWgEznuOniyLTSZhWHT0lzOR4o74ToJ58R658QfH8TcNIGZ/jABpGjmhiC4iCpWEUG0uOBrhJUQUmCVBPJmkGOxe1FOz1Nz17VT198MEH6NixY8gI2iPdSnp6OubPn5/3LKP8wBtrcjBo7GHc88P9YV8/y++D1HRg8Gigz/VAsWJ2MwuJSUBVT4k5S961XwSoJ79I619HPH/TMNLnWHAkDaOCRAzVRcHSMDIENcBpuEkFePE9mDr15AHUgKaklgK68B5NO1o95ebm5hlC1157LaxnF4mv6tWrY9myZWjYsGFe8x8H/36w9Stv7sXin/vhrOKfiN2PlNtcAYy8C6hW7UgbSwlNIFo9JfQkefO+EaCefEOtfSHx/E3DSBtj2EAaRmFIzDSIgqVhZIZpkLNwkwry6pufO/VknmlQM1JLQV15b+YdjZ4OHTqEUaNGYerU0AOpC7yaN2+OBQsWwDKNrNcnm3Jx/Z3ZOPqnLzF/fy9US99bYESoWr0OMPZB4Lzzw2NsSWgC0egpoSfIm/eVAPXkK26ti4nnbxpGWggjDqJhFBFL7I2iYGkYxc4z6Bm4SQVdAWbnTz2Z5RnkbNRSkFff/NwL09M333yDnj17RnxeUb9+/fJMpNKlS+PPP4EHH8vGI8szMWDvixiZMxKlUrOlG85NS0fK0DHA1b359TOJTPJUCtNT8syUM/GDAPXkB+XYriGev2kYxcZSHE3DSKRhsCwKloaRQbABTcVNKqAL79G0qSePwAYwLbUUwEX3cMpuelq69BX06tUT1ieMCr6mTJmCQYMGITU1FR98mIOb781G852v4/a/7kON9P8V7I7cStWQMmsBcFLdsBgbkoeAm56SZ5aciV8EqCe/SOtfRzx/0zDS51hwJA2jgkQM1UXB0jAyBDXAabhJBXjxPZg69eQB1ICmpJYCuvAeTTuSniyDaPTo0bBMoYKvChUq4IUXXsDFF18M61lFkyf+jgovzEb33GdQNf2Xgt3/rp8R+urZk88AFSpGjrM1aQhE0lPSTI4T8Z0A9eQ7cuULiudvGkbK+BwH0DByRBNbQBQsDaPYWHI0fyWNGjBLgP/oMcszyNmopSCvvvm5F9TTjh07Qp8q6oVPPgl/UPWFF16IOXPm4Pjjj8e693Jw95hfMHtnR9Qs9r3zjXW5DrjrHn4FzZlQUkUK6qlEiRJJNT9Oxl8C1JO/vHWuJp6/aRjpEIw8hoZRZC4xt4qCpWEUM87AJ+AmFXgJGAVAPRnFGehk1FKgl9/45PP1ZP0K2s6dO9G/f39kZmaGXWfkyJEYM2YM/jxcAvdNysYLbx3AvJ8G48Liq8P65jWc1ggYEfoFtHMaR46zNSkJ5OvJmlyTJk1Awygpl9m3SVFPvqHWvpB4/qZhpI0xbCANozAkZhpEwdIwMsM0yFm4SQV59c3PnXoyzzSoGamloK68N/O29PTGG2/g8ccfx8qVK8MuYn0F7fnnn0fbtu3x0rJsvH/fKnTaPx8XFFuDYim5Yf1zTzgZKSNCD7ZucSGQkhIWZ0NyE+Dfp+ReX79nRz35TVz9euL5m4aROj+nETSMnMjE2C4KloZRjDA5HNykKAKTBKgnkzSDnYtaCvb6m579hg0b0LlzZ+zevTsstfWcolmzZuHgn9Ux4c6fcN3Hd6BF8TfD+tkNI8aHfgHtGoSehG03sRAsAvz7FKz19nq21JPXhGPPL56/aRjFzjM/Aw2jfBKG30XB0jAyDDeA6bhJBXDRPZwy9eQh3IClppYCtuAeTTcnJwfTp0/HwIEDYZULvsaPH48B19yIdfetR8raVbgwbRmOSs0o2C2vnhv6JFHKU6FfQGvaLGKcjcEhwL9PwVlrP2ZKPflBObZriOdvGkaxsRRH0zASaRgsi4KlYWQQbEBTcZMK6MJ7NG3qySOwAUxLLQVw0Q1P+ZdffsHNN9+MRYsWhWWuXr06ljw+DSe8sA5VNi1EWoSvneUPyk1JRUqzdsC/hwD16+c38z3ABPj3KcCL78HUqScPoBpOKZ6/aRiZg0vDyBxLKZMoWBpGEhpWNAhwk9KAxiGOBKgnRzQMKBKglhSBsbtEYP369ejRowe+/z78l816XXYZHjr9XFRaNh3FU8I/dZSfKKNERRS/ZxzQug1Qpkx+M99JgF/npwaMEuB+ZxSnJ8nE8zcNI3OIaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2zyOQlZWFyZMnY/jw4WFE0kNfKZvbpj067N6Bo3J/D4uLDTntuiF1zD1A+fJiM8skkEeAf58oBJMEqCeTNL3JJZ6/aRiZY0zDyBxLKZMoWBpGEhpWNAhwk9KAxiGOBKgnRzQMKBKglhSBsTt27dqFvn37RvwVtHp1amPxUTVwatbXEUn9lZuKL0u0QY2b2qNS54uAqlUj9mMjCVgE+PeJOjBJgHoySfP/27sbODmKOv/jv90km80jeSCQB5KIgEYIhAQBCY8qIurxEAVBAQUPRREJj3ryB+/vA4giCCpyFx59OA45hID4F44TEkIQggiJ4elAEJAQSUxIICGEZOdf1TBD1e5U7VRNzaZ3+jO+4m53VddOv+vL9PZve3oaM5Z5/k3BKJ0xBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLBCty9VCrJr3/9azn22GNlzZo1loR+I9kX9j5YPvaPcfJBudlq0wsbSy3ym5bPyWbnzZT9Dh4p6iIkHgh0K8DrU7dEdAgQIE8BWJuoq3n+TcEo3SRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCsoN2XL18uo0aN6rL3JwzsJ18fO0wmtvXr0lZeMe+N/eWZY74hh5+xjQwYUF7LVwS6F+D1qXsjetQuQJ5qt9pUPc3zbwpG6WaBglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgBeuuryq66aab5BOf+ESXPd+9T6vMf9eW6pPPql8utK6jj1yzy3/IwT/YS8aOrt6ny6CsQMAQ4PXJwODbugXIU92EDR/APP+mYJSOm4JROktrJDOwFIwsGhYiBDhIRaCxiVOAPDlpaAgUIEuBYAXqrj/57LTTTpMbbrih6l7fO3GS7DFoddU2vfIvx/9Ytjn14852GhDoToDXp+6EaA8RIE8hWpumr3n+TcEo3RxQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCsAN03btwoV199tXz5y1+W9evXd9ljfbHQ+WMPkM9utthq61BLL23cUtYOHy9rZuwp75o5U/r372/1YQGBEAFen0K06NudAHnqTmjTt5vn3xSM0s0HBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLBmrz7Y489Jl/60pdk7ty5XfZ0S1Uo+vrIcXL85n1kUOsGq33ZxuFywwnz5YjP9peFC/+QtU2fPp2CkaXEQqgAr0+hYvT3CZAnn04+2szzbwpG6eaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgTdr9hRdekK222qrL3uk7D32irY8cN2qE7D+0TdpaSl366BWvnP1vMuRTB/Ex6FV1WBkrwOtTrBzbVRMgT9VU8rXOPP+mYJRubigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCNZk3fXbz/r27Wvt1aTWFpnYp0UOGNJfjhgxRMa12e1m55K64XXLyWeLfP4EEfU9eTJ1+L5eAfJUryDbmwLkydTI5/fm+TcFo3RzRMEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAsCbprj/97Ne//rUcfvjhlT3aThWKZk8cKdsPaKusc32jrzNq+diRIiefKurSpEo38lSh4JsEAuQpASJDVATIU4Uit9+Y598UjNJNEwWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwXp5d10ouuuuu+Tb3/62zJkzx9qb60cPkcPVFUW+R0dLq7Qe+AmRL31FZJttunQlT11IWFGHAHmqA49NuwiQpy4kuVthnn9TMEo3PRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBOul3Ts6OuT3v/+9fOc735G7777b2ouBaunEIW1ywfjNrfXmwtqR75IBJ/yztPzTQSKbbWY2Wd+TJ4uDhToFyFOdgGxuCZAniyOXC+b5NwWjdFNEwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUCwXtZdF4ruuOMO+da3viX33nuv9ey3VvccOm+LwXLQsEEyqE+r1VZeWLbnsTJq5qdFtt8+u0dReb3rK3lyybA+RoA8xaixjUuAPLlk8rPePP+mYJRuXigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCNZLuutC0W233Sbf/OY3ZcGCBV2e9W6qQPS7bUbJiL59urTpFW+0bSb9FiwU6devartrJXlyybA+RoA8xaixjUuAPLlk8rPePP+mYJRuXigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCJbz7uvXr5dbbrlFzjvvPHnooYe6PFt9HdG3hrXLqaOHy0B1k+uqj83UW9MuniWy2+5Vm30ryZNPh7ZQAfIUKkZ/nwB58unko808/6ZglG5OKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIltPuq1evluuuu06+973vydNPP93lWb5Dvf3s2KFt8umRw2S79q5XFWWferbnh0WO+ozIXnuL9Onap8ugVVaQpyoorIoWIE/RdGxYRYA8VUHJ2Srz/JuCUbrJoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgWM66P/vXZ+WKK6+Qiy66SNauXVt5dvv1bZVTRg2WUf36yDBV/Jk0oJ+0iuOKovHbiVz+c5HxEyrbx35DnmLl2K6aAHmqpsK6WAHyFCvXc9uZ598UjNK5UzBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQLAfdS6WS3H///XLppZfKL3/5S+sZjVI1oUu2GCJHjBzsLhCZWxx2nMiZ/yIyeLC5Nvp78hRNx4ZVBMhTFRRWRQuQp2i6HtvQPP+mYJSOnYJROktrJDOwFIwsGhYiBDhIRaCxiVOAPDlpaAgUIEuBYJuwu74/0a233ppdTTR//nzrmQxRSyeqt5z9y5jh2RVFVmO1hYmTRM6/SGSnKdVao9eRp2g6NqwiQJ6qoLAqWoA8RdP12Ibm+TcFo3TsFIzSWVojmYGlYGTRsBAhwEEqAo1NnALkyUlDQ6AAWQoE2wTdV6xYIb/4xS/kggsukI1LXpD3t/WRif37yLi2vjJGveXsPe39/W85Kz/nvv1FDvy4yEGHiEzfU6RV3wI77YM8pfUs+mjkqegJSLv/5CmtZyNGM8+/KRilE6ZglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIFgPdn/88cfliiuukJt//CM5e1h/2W/oAJnYFvYx97LFeJEPfOTNG1nvuZdIW1tD94A8NZS3cIOTp8JNeUN3mDw1lDfJ4Ob5NwWjJKTZIBSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBGtw9zVr1mRvO5s1a5bceeed8pVB/eRbW42o7W1m5nP7wMEi/+cbIqPHmGsb/j15ajhxoX4AeSrUdDd8Z8lTw4nr/gHm+TcFo7o5KwNQMKpQpP3GDCwFo7S2RRyNg1QRZ71x+0yeGmdbtJHJ0qafcX0T68WLF2dvO/vxjy+VdevWyifVW85O3XIzed/g9tqfYIt6i9mUPUROOkVkj+m1b5ewJ3lKiMlQQp4IQUoB8pRSszFjmeffFIzSGVMwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpECxh99WrV8stt9wiP7n03+T+++bL7n1a5aND+smnRwyVbdvdbz17raOPLO/3Hhm43QQZvtM4aR2/lSoU7Syyw2SR9oACU8J9KQ9FnsoSfE0hQJ5SKDJGWYA8lSXy+9U8/6ZglG6eKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIVmd37T1nzhz5zZW/kNH/c5NMau8j7+zfpv717fZtZ/PlIFl+zFdkr8+9S0Zu4S4o1fkU69qcPNXFx8adBMhTJxAW6xIgT3Xx9cjG5vk3BaN05BSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBIvo/sYbb8iCBQvUW85+Lb+/epZ8bTORo0YOlQGtLTWN9mrrcFlx+iUy/rMflJbaNqlp3EZ0Ik+NUC3umOSpuHPfiD0nT41QTTumef5NwSidLQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwWrs/tprr8k998yXa6+9Va79z19Ix+sr5NwR7XLSFsNlYI2ForWbbS3tp8yU1oMP2uRvNatxt7nnTK1Q9KtJgNenmpjoVKMAeaoRahN2M8+/KRilmwgKRuksrZHMwFIwsmhYiBDgIBWBxiZOAfLkpKEhUIAsBYJ5uut7Ev33HXPkyqtulgdv/6Xs22ejTB/cJtMG9ZddBrbLYHWPou4e6/pvIf32P0D6HKo+5ex96gbWrd1v092YPdlOnnpSu/l/Fnlq/jnuyT0kTz2pHfezzPNvCkZxhtW2omBUTSXBOjOwFIwSgBZ8CA5SBQ9A4t0nT4lBCzwcWapv8vXvB9f+5+1y7/X/T05ZNle2H9AmrdIio/q1Zl99o28siSwa/DEZsO/uMnH/bWXADtuIjBsnuX/fmWenyJMHh6ZgAfIUTMYGHgHy5MHJSZN5/k3BKN2kUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkMrFQqyWX/dq18+cSjrQ3/e6th8qGhA611roUO1fDStE/JiP87U9q2Ge/q1ivXk6deOW25fdLkKbdT0yufGHnK/7SZ598UjNLNFwWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJa6B3vqqeVy+pnfkYWLnpBnn74t22CYuvn0x/r3kd3V282mDuwvew0Z0P1AqkfHdjtL67nfF9lhh5r697ZO5Km3zVi+ny95yvf89LZnR57yP2Pm+TcFo3TzVYiC0YsvvihXX3213HTTTfLoo4/KoEGDZMqUKXLkkUfKUUcdJe3t7elE3xrJDCwFo+S8hRuQg1ThpryhO0yeGspbqMHJkj3d6gIi+fPiFer3jfvlhd/cIu945jey+4A1WVGoXd1PaOkbG6Sf+qiy8W197Q2rLHWot6atHz9F+u+zh7RM20VkpykiY8b06recVdlNaxV5sjhYqFOAPNUJyOaWAHmyOHK5YJ5/UzBKN0VNXzCaM2eOzJgxQ15++eWqatOmTZPZs2fL+PFpL+s2A0vBqCo9KwMEOEgFYNG1WwHy1C0RHWoUKHqW1IeZyfw/LJPZtyyQ126/SfZaebvs1L5W3t3eVtNNqp3MV/1aZOepIv37O7s0Y0PR89SMc7op94k8bUr95vvZ5Cn/c2qef1MwSjdfTV0wevzxx2Xq1Kmybt06GTJkiHz/+9+X6XtMl3Wvr8uuNjr//PMzSV00mjdvngwcWNv9A2rhNwNLwagWMfr4BDhI+XRoCxUgT6Fi9HcJFClLujj0+P9ulD/d9pAsv/13svSpP8vKFX9SVxC9KAcPGyzjarhqyOVYWT9yrMi31FvO9nt/ZVWRvilSnoo0r5tqX8nTppJvzp9LnvI/r+b5NwWjdPPV1AWjQw45RG655Rbp06eP/OnBP6mruXey5K688ko5/vjjs3WXXHKJnHzyyVZ7PQtmYCkY1SPJtlqAgxQ5SClAnlJqFnusZsySflvZypdL8r9PluTJec/IP26/TYY+eads1/GwbN++Rkb27ZNu0t+j3mq2+55vXk20444iW45u6recdQfXjHnqbp9pb5wAeWqcbRFHJk/5n3Xz/JuCUbr5atqC0eLFi2VH/cuXepx11lly7rnndlHr6OiQPfbYQxYsWCCbb7656Hsd9e3b/X0FugxUZYUZWApGVYBYFSTAQSqIi87dCJCnboBorlmgN2dJ/Qogf3+pJM8+8Zo8/chKuft/18rCPy6Q7R48Vg4dPlD2VTeirrc49FJpoKydvI+M/dTB0jZxK5EXl4g8/7yIvlzpIx8TmTSpZusidOzNeSrC/PS2fSRPvW3G8v18yVO+50c/O/P8m4JRuvlq2oLRhRdeKGeccUYmtWjRokrxqDPdrFmz5IQTTshWz58/X6ZPn965S9SyGVgKRlGEbGQIcJAyMPi2bgHyVDchA7wlkPcsbdggsvTvJXnq6dfkkUeXqreUvSRPP/U32eGxufLR9XfLLu3LZEgf9ZFliR7LWgbJmg/MkPEfP1D6TJ4ssvmoRCMXY5i856kYs9A8e0memmcu87An5CkPs+B/Dub5NwUjv1VIa9MWjMpvR9OfiLZq1arsbWnVYBYtXCRTdlafPKIeF198scycObNat+B1ZmApGAXzsUEnAQ5SnUBYrEuAPNXFx8aGwKbM0uuvb5Rn/rpKnn5mhTz77Ar5yzNL5cc/PE7Wr1+RPcOW1qEi/XaQAW88IZNkpWzTr1UOGNouHx8+WEbU+baytR0l2aA+xWxoq8j6gcOk72FHSeshM0Tera4YUp+CxiNOYFPmKe4Zs1WeBchTnmen9z038pT/OTPPvykYpZuvpi0YjRs3TpYsWSL77LOPzJ071ym2evVq2WyzzbL2L37xi3LZZZc5+4Y0mIGlYBQiR99qAhykqqmwLlaAPMXKsV1nAStL732v9FcfNiG77tq5m3O5QxVe1qx5XZb/41VZseJVWbbsFXnp76tlxdKVsuqll2WZWvfcilfU13+o9mWyYuVLsnrVi/LGa3+TUsdLalx1wyHjod9UfmhbHzlo+ADZbVC7jO3XV4b2UVWdOh6vbOyQv7zRR14eN0kGv39vmXDQx2SU+rCMllY17saNov4iVcfobGoKWHlSV3z3L9inxJkWfF+/AHmq35AR3hYgT29b5PU78/ybglG6WWrKgtH69esrv2Qcc8wx8vOf/9wrNnjwYPUL6xo58MAD5Xe/+523b7lRB9L3WLZsmUzWl6Orx5NPPinjx4/3dacNAa+APkg9+OCDWZ9ddtmlkm/vRjQi4BAgTw4YVgcLHP7pS+UB9aESHapwck3rIvnw4JXy76vGyLdatpYOVczZqNZ3dGxUX9fJG+vXysYNa2TDG69KaaP617FS/bz12c/sp/7/W8Pb5ZiRQ6t+2thadcOhVzeq4pL6qv+1qP9t3b+fPLluvTy4dp1s3dZPJqjl8eqTytrqvMJHP++HVBFr9fs+KFt85rMyfs+9pH97e7ANG4QL8NoUbsYWbgHy5LahJVyAPIWb9fQWukg0ceLE7MdSMEqn35QFo5UrV8qIESMypRNPPFEuvfRSr9iECRPUPSifz+5fpO9jVMujJeAX0htuuKHyfGoZmz4IIIAAAgj0BoEZR16srgS6Rb4zrF3+z9g3j7v6eb+qrspZ9Nrroq/OWb6hQ5Zt2Ki+6jdxtUi7On4OaG2R4X1bZYS6Oke/Pexd7W2yZb+evVLniQ1t8seJ28urO0+Wd6hi0zYrlsuGLcfIP6bsLOuHqrez8UAAAQQQQACBXiOwYsUKOeyww7LnS8Eo3bQ1ZcFIB2T0aPXRtOpxyimnyA9/+EOv2CT1KSVPPPGETJkyRR5++GFv33IjBaOyBF8RQAABBIoq8PFP/Vh2XH6zzHn3ltKqikF5fqxv7SuvD9tCVk6eKi/us5+sHT0mz0+X54YAAggggAACAQIUjAKwAro2ZcGoJ64w4i1pASmja90CXAZbNyEDGALkycDg27oEtnnP5+SFZ66Vc9UVRv8ydnhuikYd2+woHR/6iHTsPFXUX5CkNGoLkQED6tpXNm68AK9NjTcu0k8gT0Wa7cbvK3lqvHG9P4G3pNUrWH37piwY9cQ9jKpzvr3WvOkWN71+24Xv4gT0Qeree+/NNp7OjUDjENmqIkCeKhR8U6fAWefcJHff87C0qhtAH9y6Uk584QYZ2GLfiDrkR3RM3l1az/y6yJixIm1tb95UWt1jUNa8qt7npv7p7/U9BM/7mmpX9xUav63IO7dT/9TXie9489871Ndhw0J+LH1zIsBrU04mokmeBnlqkonMyW6Qp5xMhOdpmOffvCXNAxXY1JQFI20wZswYWbp0KZ+SFhgIuudTgINUPueltz4r8tRbZy5/z7tLltQNqWX+PaI+0kzktbWiPtJM1EefqSLP39W65SJ91e2t9Q2k+6t/w4aLjBj51j/1/XbvEtlBfVhEwD0C8yfCM6pHoEue+JS0ejgLvy15KnwEkgKQp6ScDRmMglFDWKVpC0aHHHKI3HLLLTJo0CBZtWqV+tTb6jfTXLRwkUzZeUqme/HFF8vMmTOTSJuB5QqjJKSFHoSDVKGnP/nOk6fkpIUdkCwVduobsuPkqSGshR2UPBV26huy4+SpIaxJBzXPv7nCKB1t0xaMLrzwQjnjjDMyqUWLFsmOO+5YVW3WrFlywgknZG36E9L0231SPMzAUjBKIVrsMThIFXv+U+89eUotWtzxyFJx574Re06eGqFa3DHJU3HnvhF7Tp4aoZp2TPP8m4JROtumLRgtXry4UiQ666yz5Nxzz+2i1qEund9jjz1kwYIFsvnmm8uLL74offv27dIvZoUZWApGMYJsYwpwkDI1+L5eAfJUryDblwXIUlmCrykEyFMKRcYoC5CnsgRfUwiQpxSKjR3DPP+mYJTOumkLRpqo/LY0/Xa0Pz34J9lpyk6W3JVXXinHH398tu6SSy6Rk08+2WqvZ8EMLAWjeiTZVgtwkCIHKQXIU0rNYo9Floo9/6n3njylFi32eOSp2POfeu/JU2rR9OOZ598UjNL5NnXB6PHHH5epU6fKunXrZMiQIXLBBRdkVxTp/+Bvuukm+e53v5tJTps2TebNmycDBw5MJmsGloJRMtbCDsRBqrBT35AdJ08NYS3koGSpkNPesJ0mTw2jLeTA5KmQ096wnSZPDaNNNrB5/k3BKBlr8970ukw0Z84cmTFjhrz88svlVdZXXSyaPXu2jB8/3lpf74IZWApG9WqyPQcpMpBSgDyl1Cz2WGSp2POfeu/JU2rRYo9Hnoo9/6n3njylFk0/nnn+TcEonW9TX2FUZtL3JrrqqqvkxhtvFH3Vkb6SaOedd5YjjjhCjj76aPUJYfddowAAMFRJREFUv+rjfRM/zMBSMEqMW8DhOEgVcNIbuMvkqYG4BRuaLBVswhu8u+SpwcAFG548FWzCG7y75KnBwAmGN8+/KRglAH1riEIUjNJx1T6SGVgKRrW70bO6AAep6i6sjRMgT3FubNVVgCx1NWFNvAB5irdjy64C5KmrCWviBchTvF1PbWmef1MwSqdOwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUAwunsFyJOXh8ZAAfIUCEZ3rwB58vLkotE8/6ZglG5KKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIRnevAHny8tAYKECeAsHo7hUgT16eXDSa598UjNJNCQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aAwXIUyAY3b0C5MnLk4tG8/ybglG6KaFglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIBjdvQLkyctDY6AAeQoEo7tXgDx5eXLRaJ5/UzBKNyUUjNJZWiOZgaVgZNGwECHAQSoCjU2cAuTJSUNDoABZCgSju1eAPHl5aAwUIE+BYHT3CpAnL08uGs3zbwpG6aaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42BAuQpEIzuXgHy5OXJRaN5/k3BKN2UUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQjO5eAfLk5aExUIA8BYLR3StAnrw8uWg0z78pGKWbEgpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0BgqQp0AwunsFyJOXJxeN5vk3BaN0U0LBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxkAB8hQIRnevAHny8uSi0Tz/pmCUbkooGKWztEYyA0vByKJhIUKAg1QEGps4BciTk4aGQAGyFAhGd68AefLy0BgoQJ4CwejuFSBPXp5cNJrn3xSM0k0JBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLB6O4VIE9eHhoDBchTIBjdvQLkycuTi0bz/JuCUbopoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjoAB5CgSju1eAPHl5ctFonn9TMEo3JRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBKO7V4A8eXloDBQgT4FgdPcKkCcvTy4azfNvCkbppoSCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjYEC5CkQjO5eAfLk5clFo3n+TcEo3ZRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTloTFQgDwFgtHdK0CevDy5aDTPvykYpZsSCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDQGCpCnQDC6ewXIk5cnF43m+TcFo3RTQsEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAMLp7BciTl4fGQAHyFAhGd68AefLy5KLRPP+mYJRuSigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCEZ3rwB58vLQGChAngLB6O4VIE9enlw0muffFIzSTQkFo3SW1khmYCkYWTQsRAhwkIpAYxOnAHly0tAQKECWAsHo7hUgT14eGgMFyFMgGN29AuTJy5OLRvP8m4JRuimhYJTO0hrJDCwFI4uGhQgBDlIRaGziFCBPThoaAgXIUiAY3b0C5MnLQ2OgAHkKBKO7V4A8eXly0Wief1MwSjclFIzSWVojmYGlYGTRsBAhwEEqAo1NnALkyUlDQ6AAWQoEo7tXgDx5eWgMFCBPgWB09wqQJy9PLhrN828KRummhIJROktrJDOwFIwsGhYiBDhIRaCxiVOAPDlpaAgUIEuBYHT3CpAnLw+NgQLkKRCM7l4B8uTlyUWjef5NwSjdlFAwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpEIzuXgHy5OWhMVCAPAWC0d0rQJ68PLloNM+/KRilmxIKRuksrZHMwFIwsmhYiBDgIBWBxiZOAfLkpKEhUIAsBYLR3StAnrw8NAYKkKdAMLp7BciTlycXjeb5NwWjdFNCwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUAwunsFyJOXh8ZAAfIUCEZ3rwB58vLkotE8/6ZglG5KKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIRnevAHny8tAYKECeAsHo7hUgT16eXDSa598UjNJNCQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aAwXIUyAY3b0C5MnLk4tG8/ybglG6KaFglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIBjdvQLkyctDY6AAeQoEo7tXgDx5eXLRaJ5/UzBKNyUUjNJZWiOZgaVgZNGwECHAQSoCjU2cAuTJSUNDoABZCgSju1eAPHl5aAwUIE+BYHT3CpAnL08uGs3zbwpG6aaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42BAuQpEIzuXgHy5OXJRaN5/k3BKN2UUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQjO5eAfLk5aExUIA8BYLR3StAnrw8uWg0z78pGKWbEgpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0BgqQp0AwunsFyJOXJxeN5vk3BaN0U0LBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxkAB8hQIRnevAHny8uSi0Tz/pmCUbkooGKWztEYyA0vByKJhIUKAg1QEGps4BciTk4aGQAGyFAhGd68AefLy0BgoQJ4CwejuFSBPXp5cNJrn3xSM0k0JBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLB6O4VIE9eHhoDBchTIBjdvQLkycuTi0bz/JuCUbopoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjoAB5CgSju1eAPHl5ctFonn9TMEo3JRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBKO7V4A8eXloDBQgT4FgdPcKkCcvTy4azfNvCkbppoSCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjYEC5CkQjO5eAfLk5clFo3n+TcEo3ZRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTloTFQgDwFgtHdK0CevDy5aDTPvykYpZsSCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDQ6BB5a8rBMHbtzl1adp3nz5mXrp0+fLgMHDrT6uLazOrGAwFsCvD7lPwrm+TcFo3TzRcEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAMLp7BciTl4fGKgI/uu8nMvPeb8qsfb4rn3/v8VaPFStWyJgxY2T9+vUyZMgQWbp0aaVodPkfr5Av3P11uWT6v8rJ7zvJ2o4FBKoJ8PpUTSVf68zzbwpG6eaGglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42dBPQVQtOu+1Blbeei0X/8x3/I0UcfXWm//vrr5fDDD5dysajc8Kcj76h6hVK5na8IaAFen/KfA/P8m4JRuvmiYJTO0hrJDCwFI4uGhQgBDlIRaGziFCBPThoaAgXIUiAY3b0C5MnLQ2MVgc7FH7NotN9++8ncuXMrW33gAx+QI7/3qezKovJKs395HV8RqCbA61M1lXytM8+/KRilmxsKRuksrZHMwFIwsmhYiBDgIBWBxiZOAfLkpKEhUIAsBYLR3StAnrw8NDoEqhWN9hq0p2y//fb2Fh9pE9l/aGUdxaIKBd/UIMDrUw1Im7iLef5NwSjdZFAwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpEIzuXgHy5OWh0SFwzjnnyI//MktWvbej0qPf/NfljRtfqSxLp2LRZn9slVEPvFk8OvLII+Xb3/722335DoEqArw+VUHJ2Srz/JuCUbrJoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjFYF169bJyJEjZe3atdK5KCT/s1rkd+vd698ab9CgQbJ8+XJpb2+v8hNYhcCbArw+5T8J5vk3BaN080XBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxioCixcvlp122klKpdKbrZ2uJJLX1FVHA1rf3rJcRHp7jbS0tMiiRYtk8uTJxlq+RcAW4PXJ9sjjknn+TcEo3QxRMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTlodEhcPfdd8uMGTNkxYoVb/boXDQqb1elWDRixAiZPXu27L333uVefEWgqgCvT1VZcrXSPP+mYJRuaigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCEZ3rwB58vLQ6BF47rnn5JOf/KTcf//9b/b6zgj7yiJ9pdHZbxWU3hpn9913l+uvv14mTJjgGZkmBN4U4PUp/0kwz78pGKWbLwpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0diOg72N0yimnyOV/+5n1aWiVzYwrjD7/+c/LxRdfLAMHDqw08w0CPgFen3w6+Wgzz78pGKWbEwpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw01iBw+nVnykVLrnm7p+MeRnPmzJF999337X58h0A3Arw+dQOUg2bz/JuCUboJoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjNwKX//EK+cLdX3+7V/mKos73NFLrT530Zbnooove7st3CHQjwOtTN0A5aDbPvykYpZsQCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDR6BJzFovI2nYpGfee/Lmv+c7m0tbWVe/AVAa8Ar09enlw0muffFIzSTQkFo3SW1khmYCkYWTQsRAhwkIpAYxOnAHly0tAQKECWAsHo7hUgT14eGh0CvmKRvkfR8ccfL7/85S9lxe6vWvc2Om3csXLhERc4RmU1ArYAr0+2Rx6XzPNvCkbpZoiCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjVUEfMUi/Slop556qmyxxRYyfvx4Ofroo+X+EQ9ZRaNZ+3xXPv/e46uMzCoEbAFen2yPPC6Z598UjNLNEAWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aOwk8tORhmXbdhyprz9jqc/KrM/5Tnn/+edGfgnb++efLwoULs/bp06fLxo0bZebMmXLFCz+3ikZ/OvIOmTp258o4fINANQFen6qp5Gudef5NwSjd3FAwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpEIzuXgHy5OWhsYrAj+77icy895tSvlLo5ZdflrvuuksOPfRQWb9+vdx7773ZVrpg1L9/f+no6JCbb75Znt38eTn1gW/LJdP/VU5+30lVRmYVArYAr0+2Rx6XzPNvCkbpZoiCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjQ4BfaVRtSuEusuTazvHj2F1wQW6y1PBeXKx++b5NwWjdFNCwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUAwunsFyJOXh8ZAAfIUCEZ3rwB58vLkotE8/6ZglG5KKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIRnevAHny8tAYKECeAsHo7hUgT16eXDSa598UjNJNCQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aAwXIUyAY3b0C5MnLk4tG8/ybglG6KaFglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIBjdvQLkyctDY6AAeQoEo7tXgDx5eXLRaJ5/UzBKNyUUjNJZWiOZgaVgZNGwECHAQSoCjU2cAuTJSUNDoABZCgSju1eAPHl5aAwUIE+BYHT3CpAnL08uGs3zbwpG6aaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42BAuQpEIzuXgHy5OXJRaN5/k3BKN2UUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQjO5eAfLk5aExUIA8BYLR3StAnrw8uWg0z78pGKWbEgpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0BgqQp0AwunsFyJOXJxeN5vk3BaN0U0LBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxkAB8hQIRnevAHny8uSi0Tz/pmCUbkooGKWztEYyA0vByKJhIUKAg1QEGps4BciTk4aGQAGyFAhGd68AefLy0BgoQJ4CwejuFSBPXp5cNJrn3xSM0k0JBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLB6O4VIE9eHhoDBchTIBjdvQLkycuTi0bz/JuCUbopoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjoAB5CgSju1eAPHl5ctFonn9TMEo3JRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBKO7V4A8eXloDBQgT4FgdPcKkCcvTy4azfNvCkbppoSCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjYEC5CkQjO5eAfLk5clFo3n+TcEo3ZRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTloTFQgDwFgtHdK0CevDy5aDTPvykYpZsSCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDQGCpCnQDC6ewXIk5cnF43m+TcFo3RTQsEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAMLp7BciTl4fGQAHyFAhGd68AefLy5KLRPP+mYJRuSigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCEZ3rwB58vLQGChAngLB6O4VIE9enlw0muffFIzSTQkFo3SW1khmYCkYWTQsRAhwkIpAYxOnAHly0tAQKECWAsHo7hUgT14eGgMFyFMgGN29AuTJy5OLRvP8m4JRuimhYJTO0hrJDCwFI4uGhQgBDlIRaGziFCBPThoaAgXIUiAY3b0C5MnLQ2OgAHkKBKO7V4A8eXly0Wief1MwSjclFIzSWVojmYGlYGTRsBAhwEEqAo1NnALkyUlDQ6AAWQoEo7tXgDx5eWgMFCBPgWB09wqQJy9PLhrN828KRummhIJROktrpCVLlsi4ceOydQ8++KBstdVWVjsLCIQIrFu3Th544IFsk1133VXa29tDNqcvApYAebI4WKhDgCzVgcemXQTIUxcSVtQhQJ7qwGPTLgLkqQtJ7lYsW7ZMJk+enD2vF154QcaOHZu759gbnxAFowbN2iOPPFIJbIN+BMMigAACCCCAAAIIIIAAAggggIAhsHjxYtlhhx2MNXwbK0DBKFaum+3mzp0r++23Xze9aEYAAQQQQAABBBBAAAEEEEAAgVQCFIxSSYpQMEpnaY30/PPPy4QJE7J1Cx9eKKPHjLbaWUAgRMC8xFK/AI4aNSpkc/oiYAmQJ4uDhToEyFIdeGzaRYA8dSFhRR0C5KkOPDbtIkCeupDkbsWGDRtk5cqV2fPabrvtpK2tLXfPsTc+IQpGDZo1brrVINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwatD08KLSINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwatD08KLSINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwatD08KLSINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwyvX08OQQQAABBBBAAAEEEEAAAQQQQACBnhegYNTz5vxEBBBAAAEEEEAAAQQQQAABBBBAINcCFIxyPT08OQQQQAABBBBAAAEEEEAAAQQQQKDnBSgY9bw5PxEBBBBAAAEEEEAAAQQQQAABBBDItQAFo1xPD08OAQQQQAABBBBAAAEEEEAAAQQQ6HkBCkY9b85PRAABBBBAAAEEEEAAAQQQQAABBHItQMEo19PDk0MAAQQQQAABBBBAAAEEEEAAAQR6XoCCUc+b8xMRQAABBBBAAAEEEEAAAQQQQACBXAtQMMr19PDkEEAAAQQQQAABBBBAAAEEEEAAgZ4XoGDU8+b8RAQQQAABBBBAAAEEEEAAAQQQQCDXAhSMcj09PDkEEEAAAQQQQAABBBBAAAEEEECg5wUoGDXAfO3atfLYY4/JwoUL5YEHHpB58+bJI488kv2k97znPfLoo492+1OXLFki48aN67af7nDaaafJhRdeWFNfOvU+gRR5Mvf6qaeekquuukpuvfVWeeKJJ2TzzTeXXXbZRY466ig57LDDpE+fPmZ3vi+YwIwZM2T27Nk17XWpVKqpH52aU+DFF1+Uq6++Wm666absuDZo0CCZMmWKHHnkkdnrSXt7e3PuOHuVTKClpaWmsQ499NAsZzV1plNTCqxYsUL+/Oc/y8MPPywLFiyQO++8U5YuXZrta8zvwffcc49cc801MnfuXHn22Wdl4sSJsu+++8qxxx4re+21V1MaslNvC6TIk/5dSf/OVMtDHyf16xgPBHqlgPqFn0diAfXioc+iqv5TBaOaftoLL7xQdftq46oDZU1j0ql3CqTIU3nPr7/++lK/fv2c2TrggANKK1euLHfnawEF1C80znx0fv0pIA+7/JbAXXfdVRo2bJgzK9OmTSs999xzeCHgFej8muJa1q9LPIot4MqGXh/ye/DGjRtLX/3qV52vXXq8r33tayXdj0fzCqTIkyoCeXNk/gzdlwcCvVWAK4zUf82pH+Zf6Lfcckt5//vfL7/97W/llVdekZgrjH7605/Khz70IefTHDp0qGyxxRbOdhp6t0CKPGkBfaXbfvvtJx0dHTJhwgQ599xzZeedd5ZVq1bJz372M7n88sszqIMOOii7wqS1tbV3w/HsowTKedt///3lsssu846x7bbbettpbE6Bxx9/XKZOnSrr1q2TIUOGyPe//32Zvsd0Wff6uuwqkPPPPz/bcVU0yl53Bg4c2JwQ7FXdAuUrjM4++2z57Gc/6xxvwIABNV917RyEhl4tUM6K3olJkyZlv79cd9112T6FXGH0gx/8QM4888xsO/07kSoeZb8TqQJ39lo2Z86crE33O/3007Pv+b/mE0iRJ/MKo/nz53vPxfT5oD5e8kCgVwr01kpXnp/3r371q5IqEFl/XdVXFqmAlGKuMKIqnefZbvxzS5GnN954o7TjjjtmGdRXBTz//PNdnvg555xT+UsJmevCU5gV5SuM+It+YaY8eEcPPvjg7LVCvX21tPDhhV22v+KKKyqvJZdcckmXdlYgUBbQvxfpf+SkLMJXl8DFF19cUsWc0j/+8Y+si3klfq1XGP31r38t6dctnTn1R5GSKnpbP+61117L1ut23Y+rJC2eplpIkSfzCiOdRx4INKuANOuO5W2/KBjlbUZ69/MJzdNtt91WOYH793//96o7r39RGjVqVNZv9913r9qHlc0vQMGo+ee4nj1U9xCpvJacddZZVYfSb+XYbbfdsn7qHmklXbDmgUA1AQpG1VRYV4tATMFIXclWef1S9xmt+mP0+nIu9R/SeBRDICZPFIyKkQ32Ut2wFISeEQg9wTdfuLjao2fmqDf9lNA8nXTSSZVfgJYvX+7cVX0CWP5FSf8ljkfxBCgYFW/OQ/ZYvU2j8hqxaNEi56a6MF1+LVGX6jv70VBsgXJGuMKo2DmI2Xvz9+RarjBSb8cvvfOd78xel3bddVfvj3zve9+b9VNvuy7p7Xg0v0BonrQIBaPmzwV7+KYABaMeSkLoCb75wkXBqIcmqRf9mNA8vfvd785++dG/BPke+q2U5V/gb7zxRl9X2ppUgIJRk05sot0qvx1NfSJaacOGDc5R9VvVyq8l+tJ/HghUEyhnhIJRNR3W+QTM35NrKRj97W9/q7wmua6OLP+8r3/965W+ejsezS8QmictQsGo+XPBHr4pQMGoh5IQeoJvvnCpm2aX1EcVl9ra2rJPpdFvF9IHu0cffbSHnj0/Jm8CIXlas2ZN5Refz33uc95deeyxxyp91Y1rvX1pbE6BcsFI3Ri9pD81b8SIEdlrj/5L63HHHVeaPftm3mLUnFNf016NHTs2e43YZ599vP3VzfQrryVf/OIXvX1pLK5AuWCkf6/Rb2Nsb28vqRvDltQHMpROPfXUkvr49OLisOdeAfP35FoKRvr+R+W8XXPNNd6xr7766krfu+++29uXxuYQCM2T3muzYKQ/0Xjrrbcu9e3btzR69OjShz/84dJFF11U+vvf/94cQOxFoQUoGPXQ9Iec4OunZL5wlQ9w1b7qwtHrr7/eQ3vBj8mLQEiennnmmcovPt/4xje8u7By5cpK3y9/+cvevjQ2p0C5YFTt9aa8Tp/cPf30080JwF45BfSxppyBY445xtmv3KCvQtL9DzzwwPIqviJgCZTz5Pv6z//8zyX1KbPWdiwgYP6eXEvBSH2iWuX16/bbb/cC6vZyJvV2PJpfIDRPWsQsGJXz0vmr/mM/GWr+/DT7HrboHVTh5tFgge23317U1RuiTvRFXRnU7U9bsmSJqKuK5Nhjj5W99tpbtn7HO6Stf5ssW7ZM9Ed+XnDBBaJ+gcrG+cpXviI/+tGPuh2TDs0jEJKnRx55RCZPnpztvP746/LHyVbTUCeEov7CmzXpjzhWf4Wr1o11TSzwiU98QtSnw8hHP/rR7PVKfaqeqKvUZPHixXLppZeK+ot/tvfqCiS5//77Rf0lrYk12DVTQBWURV1xlq068cQTszyY7Z2/1xlRn8go06dPF/2RwzwQ6CygioqirlwU/fHm22yzjQwcOFBWrFgh9913X/YR50uXLs02UYVs+a//+i9Rf73vPATLBRXQvyePGzcu23tVMJILL7zQK3HllVfK8ccfn/W55557ZM8993T21+1777131n7VVVdlGXV2pqEpBELzpHd69uzZov4QK5/+9KdF3fJBxowZk1no497NN98s6l5++sKMbJ36xGP55Cc/mX3P/yHQ6wSavSKWl/0LuSJEP+f169eX9KdWuR7PPvtsadKkSZW/gNx1112urqxvQoGQPD344IOVnHR3LxH96UbqRSz7d/jhhzehHLvUncDq1audXfSnXem/5JYzon75dvalofkE1Ml7Ze5POeWUbnewfO80/ZZqHghUE/C93uiPT1eFpErmfv7zn1cbgnUFFQi9IuQnP/lJJUvqjx1eNd1ePs6pP5R4+9LYHAKhedJ7ra989N0UXb8NUr9FTWdJFcNLvg+daQ5F9qJZBQr7lrTygaCeryE3ow45wa81bGYhQFWta92Mfg0QqCdH5W0blSd1ZUjlFx91hZF379etW1fpq64w8valcdMJlDNTz9eQvJl7qm90XP4EGf3zeX++qdPc36srPyqvD+oKo253dvz48Vl/dYVRt33pgEA1AX3D4fIJl76vEQ8EygKhJ/hXXHFF5fVLXUFUHqbq13nz5lX6qiuMqvZhZXMJhOap1r3XBcfy72o//elPa92MfgjkSoCC0VtXU5T/Yw75GnLC1YiCkU6SvpeIfs76PbL66hAem0YgJDeuvo3KE/cw2jSZaORPdWUoZH1I3jrvi/mL96233tq5meUmFeAeRk06sTnfraOPPrpywvXSSy/l/Nny9HpKIPQEn3sY9dTM9M6fE5qnWvdSXynZ0tKSvYYdccQRtW5GPwRyJVDYexj99a9/VedW9T0233xzGTx4cE2DhNxzpqYB3+qkPn0me4+sXtTv+x8+fHjI5vRNJJDnPK1du1b0fSL0Q31Kmuj38bsejz/+eHbfGt2uPiVNvva1r7m6sn4TCvR03jrvqvrUGNl3332z1ap4JOqmtJ27sNykAvoeDfq+MupT0mTu3LnOvVRvNZLNNtssa9fHqcsuu8zZlwYEfAL6WKQ+5jzrou+ltsMOO/i601YQgdB7zujXK32vLP3Q92fU92l0PXS7vreWfujjXfl+Rq7+rO/9AqF5Ctljfa8tPb76I392f7aQbemLQC4EclW+auIn06grjPTHFasgZf/02wV4FEMgNE/le4notxL5Hr/97W8rebrxxht9XWkrsID+mOHy646+2ohHcQQOPvjgbO71J6Dptye6HgsfXljJSHf3TnONwXoEtIAqGFWypN9izQMBLRB6RYh+e2P5uKU/Ydj3UAXKSl+9HY/mFwjNU4iIKhhledLvCuGBQG8UKOxb0np6skJP8Gt9fnvssUf2IsRb0moVa45+oXk66aSTKr/8+G66p3+JKv9Cpa5iaQ4s9iK5gLpKrZKT3/zmN8nHZ8D8CvzgBz+ozP2iRYucT1R9Okyln/qENGc/GhDoTuCYY46pZIl7pnWnVZz20BN8fXPid77znVmWdt11Vy+Ubte/C2277bbemxp7B6GxVwmE5qnWndN/zC+/JY37zdaqRr+8CVAw6qEZCT3Br+VpPfTQQ5VfovhEq1rEmqdPaJ5uu+22Slb0iVy1h/5UvlGjRmX9+CtINSHWaQF9Vcluu+1WyZP+5CwexRH485//XJl711/p9f30yhlRb90u6U/X44FAjIC+uqNfv35Z5vi0vRjB5t0m5gT/7LPPrrx+LVy4sCqOXl/+w9k555xTtQ8rm08gJk+1KOgbXZfzxCfu1SJGnzwKUDDqoVkJPcH//e9/7/2rxnPPPVeaNGlS5UXojjvu6KE94cfkQSA0T/qEbccdd8zyMmzYsNLzzz/fZTf0L0blg1o9N0TuMjAreo3AggULSr6PudY5Ou200yo5OfbYY3vNvvFE0wmU35bWp0+fkn7rWeeHeVP0Sy65pHMzywhkAnfddZf3bY36ZrHqnjOV15urr74aOQQqAjEn+PrK6dbW1ixT+++/f0l/Mqz50Mt6vf5dSL++Pfvss2Yz3zexQGiedP/HHnvMKzJnzpxKwbu9vZ1PlfVq0ZhngcLe9FodDBr2UCfjoj7y3hr/S1/6Unaj0NGjR3e5+ae+md7IkSOt/uryRVEfISuf+tSnZOrUqaK3U287k2XLlon6JUsuuOACeeWVV7Jt9Niqgm1tz0LzCKTIk9ZQHxOb3fBRXZYtEyZMkPPOO0/UX2xF35z2Zz/7mcyaNStDO+igg2T27NmifqlqHkT2pCaB008/XS6//HJRhaDsJp/q8v3sxv76xunqypLsdeb+++/PxlIfmS5/+MMfRN/MkUexBPTN8fVxSZ1cyZAhQ7LjkXp7tKhPURNVbJbvfve7Gci0adOy152BAwcWC4i9rUlAfxiIzsxnPvMZUW8Bkq3GbSX92/vLypUrs9cW9fbH7EaxejB9XLrhhhuy34NqGpxOTSegrqoXVcCp7Jf+oJfyBy780z/9U+X7codDDz20/K31VefqzDPPzNbpm2DrD/fQvxOpP8TK9773PVEn+Vmb7qePiTyaU6DePP3xj3/MXrc+8pGPyCGHHCL69ax8Lqd/b9e/R6sr+vWFGRngtddem53TNacme9X0AnmuZvXW56avzlDBqfnfAw880GVXa91eX16rP+qYR/MKpMhTWef666+v/LWjWsYOOOCAkvplvdydrwUTMK8eqpaP8ro999yz9Je//KVgOuyuKaCvDtFXK5Yz0fmrKhaV9JWwPBBwCZSvlO2cnc7LX/jCF7xXPrrGZ31zCdR6fCrnx7X3+i2zqmDkfO3S23/1q18t6X48mleg3jzpc7dy1nxf1R9MSr/61a+aF5I9K4QAVxip/8pTP3RVecaMGTUPq150RH16ldVf/4VDX6V03333yZNPPim6Wr1q1SpR94MQ9dai7EqRI444QtQN+aztWGg+gRR5MlWeeuopUTctFvWJaPLEE0/IiBEjsr+SHHXUUXLYYYeJugzb7M73BRJ45plnso8Q1lcRqfs4iLp/SPYX/gEDBoi+2kgVirK/pKlL9rkCrUC5cO3qiy++KFdddZWoT1QUfdWRvpJIXxmrj01HH320qEvwXZuyHgHRf6HXv+PoKxV1ftRbPER9KIMMHz5c1Cd7yr777itHfPII2WnKTmghkF3tc9FFF9Usoc7ivH31VdfXXHNNdkWR/h1bXzWrrzg67rjjZK+99vJuS2PvF9BXj9WTJ33l9Z133in6HE7/zqSvftNXqam37suYMWNE3cdPPvjBD4q60XX2e3bvF2MPiixAwajIs8++I4AAAggggAACCCCAAAIIIIAAAlUEKBhVQWEVAggggAACCCCAAAIIIIAAAgggUGQBCkZFnn32HQEEEEAAAQQQQAABBBBAAAEEEKgiQMGoCgqrEEAAAQQQQAABBBBAAAEEEEAAgSILUDAq8uyz7wgggAACCCCAAAIIIIAAAggggEAVAQpGVVBYhQACCCCAAAIIIIAAAggggAACCBRZgIJRkWeffUcAAQQQQAABBBBAAAEEEEAAAQSqCFAwqoLCKgQQQAABBBBAAAEEEEAAAQQQQKDIAhSMijz77DsCCCCAAAIIIIAAAggggAACCCBQRYCCURUUViGAAAIIIIAAAggggAACCCCAAAJFFqBgVOTZZ98RQAABBBBAAAEEEEAAAQQQQACBKgIUjKqgsAoBBBBAAAEEEEAAAQQQQAABBBAosgAFoyLPPvuOAAIIIIAAAggggAACCCCAAAIIVBGgYFQFhVUIIIAAAggggAACCCCAAAIIIIBAkQUoGBV59tl3BBBAAAEEEEAAAQQQQAABBBBAoIoABaMqKKxCAAEEEEAAAQQQQAABBBBAAAEEiixAwajIs8++I4AAAggggAACCCCAAAIIIIAAAlUEKBhVQWEVAggggAACCCCAAAIIIIAAAgggUGQBCkZFnn32HQEEEEAAAQQQQAABBBBAAAEEEKgiQMGoCgqrEEAAAQQQQAABBBBAAAEEEEAAgSILUDAq8uyz7wgggAACCCCAAAIIIIAAAggggEAVAQpGVVBYhQACCCCAAAIIIIAAAggggAACCBRZgIJRkWeffUcAAQQQQAABBBBAAAEEEEAAAQSqCFAwqoLCKgQQQAABBBBAAAEEEEAAAQQQQKDIAhSMijz77DsCCCCAAAIIIIAAAggggAACCCBQRYCCURUUViGAAAIIIIAAAggggAACCCCAAAJFFqBgVOTZZ98RQAABBBBAAAEEEEAAAQQQQACBKgIUjKqgsAoBBBBAAAEEEEAAAQQQQAABBBAosgAFoyLPPvuOAAIIIIAAAggggAACCCCAAAIIVBGgYFQFhVUIIIAAAggggAACCCCAAAIIIIBAkQUoGBV59tl3BBBAAAEEEEAAAQQQQAABBBBAoIoABaMqKKxCAAEEEEAAAQQQQAABBBBAAAEEiixAwajIs8++I4AAAggggAACCCCAAAIIIIAAAlUEKBhVQWEVAggggAACCCCAAAIIIIAAAgggUGQBCkZFnn32HQEEEEAAAQQQQAABBBBAAAEEEKgiQMGoCgqrEEAAAQQQQAABBBBAAAEEEEAAgSIL/H8oVzrPrACkCwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<IPython.core.display.Image object>"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"image/png": {
|
|
"width": 600
|
|
}
|
|
},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from IPython.display import Image\n",
|
|
"Image(filename=\"animation.png\",width=600)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Simulation\n",
|
|
"\n",
|
|
"This is a simulation of EKF SLAM. \n",
|
|
"\n",
|
|
"- Black stars: landmarks\n",
|
|
"- Green crosses: estimates of landmark positions\n",
|
|
"- Black line: dead reckoning \n",
|
|
"- Blue line: ground truth\n",
|
|
"- Red line: EKF SLAM position estimation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Introduction\n",
|
|
"\n",
|
|
"EKF SLAM models the SLAM problem in a single EKF where the modeled state is both the pose $(x, y, \\theta)$ and \n",
|
|
"an array of landmarks $[(x_1, y_1), (x_2, x_y), ... , (x_n, y_n)]$ for $n$ landmarks. The covariance between each of the positions and landmarks are also tracked. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\\begin{equation}\n",
|
|
"X = \\begin{bmatrix} x \\\\ y \\\\ \\theta \\\\ x_1 \\\\ y_1 \\\\ x_2 \\\\ y_2 \\\\ \\dots \\\\ x_n \\\\ y_n \\end{bmatrix}\n",
|
|
"\\end{equation}\n",
|
|
"\n",
|
|
"\\begin{equation}\n",
|
|
"P = \\begin{bmatrix} \n",
|
|
"\\sigma_{xx} & \\sigma_{xy} & \\sigma_{x\\theta} & \\sigma_{xx_1} & \\sigma_{xy_1} & \\sigma_{xx_2} & \\sigma_{xy_2} & \\dots & \\sigma_{xx_n} & \\sigma_{xy_n} \\\\\n",
|
|
"\\sigma_{yx} & \\sigma_{yy} & \\sigma_{y\\theta} & \\sigma_{yx_1} & \\sigma_{yy_1} & \\sigma_{yx_2} & \\sigma_{yy_2} & \\dots & \\sigma_{yx_n} & \\sigma_{yy_n} \\\\\n",
|
|
" & & & & \\vdots & & & & & \\\\\n",
|
|
"\\sigma_{x_nx} & \\sigma_{x_ny} & \\sigma_{x_n\\theta} & \\sigma_{x_nx_1} & \\sigma_{x_ny_1} & \\sigma_{x_nx_2} & \\sigma_{x_ny_2} & \\dots & \\sigma_{x_nx_n} & \\sigma_{x_ny_n}\n",
|
|
"\\end{bmatrix}\n",
|
|
"\\end{equation}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"A single estimate of the pose is tracked over time, while the confidence in the pose is tracked by the \n",
|
|
"covariance matrix $P$. $P$ is a symmetric square matrix whith each element in the matrix corresponding to the \n",
|
|
"covariance between two parts of the system. For example, $\\sigma_{xy}$ represents the covariance between the \n",
|
|
"belief of $x$ and $y$ and is equal to $\\sigma_{yx}$. \n",
|
|
"\n",
|
|
"The state can be represented more concisely as follows. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\\begin{equation}\n",
|
|
"X = \\begin{bmatrix} x \\\\ m \\end{bmatrix}\n",
|
|
"\\end{equation}\n",
|
|
"\\begin{equation}\n",
|
|
"P = \\begin{bmatrix} \n",
|
|
"\\Sigma_{xx} & \\Sigma_{xm}\\\\\n",
|
|
"\\Sigma_{mx} & \\Sigma_{mm}\\\\\n",
|
|
"\\end{bmatrix}\n",
|
|
"\\end{equation}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Here the state simplifies to a combination of pose ($x$) and map ($m$). The covariance matrix becomes easier to \n",
|
|
"understand and simply reads as the uncertainty of the robots pose ($\\Sigma_{xx}$), the uncertainty of the \n",
|
|
"map ($\\Sigma_{mm}$), and the uncertainty of the robots pose with respect to the map and vice versa \n",
|
|
"($\\Sigma_{xm}$, $\\Sigma_{mx}$).\n",
|
|
"\n",
|
|
"Take care to note the difference between $X$ (state) and $x$ (pose). "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\"\"\"\n",
|
|
"Extended Kalman Filter SLAM example\n",
|
|
"original author: Atsushi Sakai (@Atsushi_twi)\n",
|
|
"notebook author: Andrew Tu (drewtu2)\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"import math\n",
|
|
"import numpy as np\n",
|
|
"%matplotlib notebook\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"\n",
|
|
"# EKF state covariance\n",
|
|
"Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)])**2 # Change in covariance\n",
|
|
"\n",
|
|
"# Simulation parameter\n",
|
|
"Qsim = np.diag([0.2, np.deg2rad(1.0)])**2 # Sensor Noise\n",
|
|
"Rsim = np.diag([1.0, np.deg2rad(10.0)])**2 # Process Noise\n",
|
|
"\n",
|
|
"DT = 0.1 # time tick [s]\n",
|
|
"SIM_TIME = 50.0 # simulation time [s]\n",
|
|
"MAX_RANGE = 20.0 # maximum observation range\n",
|
|
"M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.\n",
|
|
"STATE_SIZE = 3 # State size [x,y,yaw]\n",
|
|
"LM_SIZE = 2 # LM state size [x,y]\n",
|
|
"\n",
|
|
"show_animation = True"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Algorithm Walkthrough\n",
|
|
"\n",
|
|
"At each time step, the following is done. \n",
|
|
"- predict the new state using the control functions\n",
|
|
"- update the belief in landmark positions based on the estimated state and measurements"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def ekf_slam(xEst, PEst, u, z):\n",
|
|
" \"\"\"\n",
|
|
" Performs an iteration of EKF SLAM from the available information. \n",
|
|
" \n",
|
|
" :param xEst: the belief in last position\n",
|
|
" :param PEst: the uncertainty in last position\n",
|
|
" :param u: the control function applied to the last position \n",
|
|
" :param z: measurements at this step\n",
|
|
" :returns: the next estimated position and associated covariance\n",
|
|
" \"\"\"\n",
|
|
" S = STATE_SIZE\n",
|
|
"\n",
|
|
" # Predict\n",
|
|
" xEst, PEst, G, Fx = predict(xEst, PEst, u)\n",
|
|
" initP = np.eye(2)\n",
|
|
"\n",
|
|
" # Update\n",
|
|
" xEst, PEst = update(xEst, PEst, u, z, initP)\n",
|
|
"\n",
|
|
" return xEst, PEst\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 1- Predict\n",
|
|
"**Predict State update:** The following equations describe the predicted motion model of the robot in case we provide only the control $(v,w)$, which are the linear and angular velocity repsectively. \n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"F=\n",
|
|
"\\begin{bmatrix}\n",
|
|
"1 & 0 & 0 \\\\\n",
|
|
"0 & 1 & 0 \\\\\n",
|
|
"0 & 0 & 1 \n",
|
|
"\\end{bmatrix}\n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"B=\n",
|
|
"\\begin{bmatrix}\n",
|
|
"\\Delta t cos(\\theta) & 0\\\\\n",
|
|
"\\Delta t sin(\\theta) & 0\\\\\n",
|
|
"0 & \\Delta t\n",
|
|
"\\end{bmatrix}\n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"U=\n",
|
|
"\\begin{bmatrix}\n",
|
|
"v_t\\\\\n",
|
|
"w_t\\\\\n",
|
|
"\\end{bmatrix}\n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"X = FX + BU \n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"\\begin{bmatrix}\n",
|
|
"x_{t+1} \\\\\n",
|
|
"y_{t+1} \\\\\n",
|
|
"\\theta_{t+1}\n",
|
|
"\\end{bmatrix}=\n",
|
|
"\\begin{bmatrix}\n",
|
|
"1 & 0 & 0 \\\\\n",
|
|
"0 & 1 & 0 \\\\\n",
|
|
"0 & 0 & 1 \n",
|
|
"\\end{bmatrix}\\begin{bmatrix}\n",
|
|
"x_{t} \\\\\n",
|
|
"y_{t} \\\\\n",
|
|
"\\theta_{t}\n",
|
|
"\\end{bmatrix}+\n",
|
|
"\\begin{bmatrix}\n",
|
|
"\\Delta t cos(\\theta) & 0\\\\\n",
|
|
"\\Delta t sin(\\theta) & 0\\\\\n",
|
|
"0 & \\Delta t\n",
|
|
"\\end{bmatrix}\n",
|
|
"\\begin{bmatrix}\n",
|
|
"v_{t} + \\sigma_v\\\\\n",
|
|
"w_{t} + \\sigma_w\\\\\n",
|
|
"\\end{bmatrix}\n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"Notice that while $U$ is only defined by $v_t$ and $w_t$, in the actual calcuations, a $+\\sigma_v$ and \n",
|
|
"$+\\sigma_w$ appear. These values represent the error bewteen the given control inputs and the actual control \n",
|
|
"inputs. \n",
|
|
"\n",
|
|
"As a result, the simulation is set up as the following. $R$ represents the process noise which is added to the \n",
|
|
"control inputs to simulate noise experienced in the real world. A set of truth values are computed from the raw \n",
|
|
"control values while the values dead reckoning values incorporate the error into the estimation. \n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"R=\n",
|
|
"\\begin{bmatrix}\n",
|
|
"\\sigma_v\\\\\n",
|
|
"\\sigma_w\\\\\n",
|
|
"\\end{bmatrix}\n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"X_{true} = FX + B(U)\n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"$\\begin{equation*}\n",
|
|
"X_{DR} = FX + B(U + R)\n",
|
|
"\\end{equation*}$\n",
|
|
"\n",
|
|
"The implementation of the motion model prediciton code is shown in `motion_model`. The `observation` function \n",
|
|
"shows how the simulation uses (or doesn't use) the process noise `Rsim` to the find the ground truth and dead reckoning estimtates of the pose.\n",
|
|
"\n",
|
|
"**Predict covariance:** Add the state covariance to the the current uncertainty of the EKF. At each time step, the uncertainty in the system grows by the covariance of the pose, $Cx$. \n",
|
|
"\n",
|
|
"$\n",
|
|
"P = G^TPG + Cx\n",
|
|
"$\n",
|
|
"\n",
|
|
"Notice this uncertainty is only growing with respect to the pose, not the landmarks. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def predict(xEst, PEst, u):\n",
|
|
" \"\"\"\n",
|
|
" Performs the prediction step of EKF SLAM\n",
|
|
" \n",
|
|
" :param xEst: nx1 state vector\n",
|
|
" :param PEst: nxn covariacne matrix\n",
|
|
" :param u: 2x1 control vector\n",
|
|
" :returns: predicted state vector, predicted covariance, jacobian of control vector, transition fx\n",
|
|
" \"\"\"\n",
|
|
" S = STATE_SIZE\n",
|
|
" xEst[0:S] = motion_model(xEst[0:S], u)\n",
|
|
" G, Fx = jacob_motion(xEst[0:S], u)\n",
|
|
" # Fx is an an identity matrix of size (STATE_SIZE)\n",
|
|
" # sigma = G*sigma*G.T + Noise\n",
|
|
" PEst[0:S, 0:S] = G.T * PEst[0:S, 0:S] * G + Fx.T * Cx * Fx\n",
|
|
" return xEst, PEst, G, Fx"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def motion_model(x, u):\n",
|
|
" \"\"\"\n",
|
|
" Computes the motion model based on current state and input function. \n",
|
|
" \n",
|
|
" :param x: 3x1 pose estimation\n",
|
|
" :param u: 2x1 control input [v; w]\n",
|
|
" :returns: the resutling state after the control function is applied\n",
|
|
" \"\"\"\n",
|
|
" F = np.array([[1.0, 0, 0],\n",
|
|
" [0, 1.0, 0],\n",
|
|
" [0, 0, 1.0]])\n",
|
|
"\n",
|
|
" B = np.array([[DT * math.cos(x[2, 0]), 0],\n",
|
|
" [DT * math.sin(x[2, 0]), 0],\n",
|
|
" [0.0, DT]])\n",
|
|
"\n",
|
|
" x = (F @ x) + (B @ u)\n",
|
|
" return x"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 2 - Update\n",
|
|
"In the update phase, the observations of nearby landmarks are used to correct the location estimate. \n",
|
|
"\n",
|
|
"For every landmark observed, it is associated to a particular landmark in the known map. If no landmark exists \n",
|
|
"in the position surrounding the landmark, it is taken as a NEW landmark. The distance threshold for how far a \n",
|
|
"landmark must be from the next known landmark before its considered to be a new landmark is set by `M_DIST_TH`.\n",
|
|
"\n",
|
|
"With an observation associated to the appropriate landmark, the **innovation** can be calculated. Innovation \n",
|
|
"($y$) is the difference between the observation and the observation that *should* have been made if the \n",
|
|
"observation were made from the pose predicted in the predict stage.\n",
|
|
"\n",
|
|
"$\n",
|
|
"y = z_t - h(X)\n",
|
|
"$\n",
|
|
"\n",
|
|
"With the innovation calculated, the question becomes which to trust more - the observations or the predictions? \n",
|
|
"To determine this, we calculate the Kalman Gain - a percent of how much of the innovation to add to the \n",
|
|
"prediction based on the uncertainty in the predict step and the update step. \n",
|
|
"\n",
|
|
"$\n",
|
|
"K = \\bar{P_t}H_t^T(H_t\\bar{P_t}H_t^T + Q_t)^{-1}\n",
|
|
"$\n",
|
|
"In these equations, $H$ is the jacobian of the measurement function. The multiplications by $H^T$ and $H$ \n",
|
|
"represent the application of the delta to the measurement covariance. \n",
|
|
"Intuitively, this equation is applying the following from the single variate Kalman equation but in the \n",
|
|
"multivariate form, i.e. finding the ratio of the uncertianty of the process compared the measurment. \n",
|
|
"\n",
|
|
"$\n",
|
|
"K = \\frac{\\bar{P_t}}{\\bar{P_t} + Q_t}\n",
|
|
"$\n",
|
|
"\n",
|
|
"If $Q_t << \\bar{P_t}$, (i.e. the measurement covariance is low relative to the current estimate), then the \n",
|
|
"Kalman gain will be $~1$. This results in adding all of the innovation to the estimate -- and therefore \n",
|
|
"completely believing the measurement. \n",
|
|
"\n",
|
|
"However, if $Q_t >> \\bar{P_t}$ then the Kalman gain will go to 0, signaling a high trust in the process \n",
|
|
"and little trust in the measurement.\n",
|
|
"\n",
|
|
"The update is captured in the following. \n",
|
|
"\n",
|
|
"$\n",
|
|
"xUpdate = xEst + (K * y)\n",
|
|
"$\n",
|
|
"\n",
|
|
"Of course, the covariance must also be updated as well to account for the changing uncertainty. \n",
|
|
"\n",
|
|
"$\n",
|
|
"P_{t} = (I-K_tH_t)\\bar{P_t}\n",
|
|
"$"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def update(xEst, PEst, u, z, initP):\n",
|
|
" \"\"\"\n",
|
|
" Performs the update step of EKF SLAM\n",
|
|
" \n",
|
|
" :param xEst: nx1 the predicted pose of the system and the pose of the landmarks\n",
|
|
" :param PEst: nxn the predicted covariance\n",
|
|
" :param u: 2x1 the control function \n",
|
|
" :param z: the measurements read at new position\n",
|
|
" :param initP: 2x2 an identity matrix acting as the initial covariance\n",
|
|
" :returns: the updated state and covariance for the system\n",
|
|
" \"\"\"\n",
|
|
" for iz in range(len(z[:, 0])): # for each observation\n",
|
|
" minid = search_correspond_LM_ID(xEst, PEst, z[iz, 0:2]) # associate to a known landmark\n",
|
|
"\n",
|
|
" nLM = calc_n_LM(xEst) # number of landmarks we currently know about\n",
|
|
" \n",
|
|
" if minid == nLM: # Landmark is a NEW landmark\n",
|
|
" print(\"New LM\")\n",
|
|
" # Extend state and covariance matrix\n",
|
|
" xAug = np.vstack((xEst, calc_LM_Pos(xEst, z[iz, :])))\n",
|
|
" PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),\n",
|
|
" np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))\n",
|
|
" xEst = xAug\n",
|
|
" PEst = PAug\n",
|
|
" \n",
|
|
" lm = get_LM_Pos_from_state(xEst, minid)\n",
|
|
" y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], minid)\n",
|
|
"\n",
|
|
" K = (PEst @ H.T) @ np.linalg.inv(S) # Calculate Kalman Gain\n",
|
|
" xEst = xEst + (K @ y)\n",
|
|
" PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst\n",
|
|
" \n",
|
|
" xEst[2] = pi_2_pi(xEst[2])\n",
|
|
" return xEst, PEst\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def calc_innovation(lm, xEst, PEst, z, LMid):\n",
|
|
" \"\"\"\n",
|
|
" Calculates the innovation based on expected position and landmark position\n",
|
|
" \n",
|
|
" :param lm: landmark position\n",
|
|
" :param xEst: estimated position/state\n",
|
|
" :param PEst: estimated covariance\n",
|
|
" :param z: read measurements\n",
|
|
" :param LMid: landmark id\n",
|
|
" :returns: returns the innovation y, and the jacobian H, and S, used to calculate the Kalman Gain\n",
|
|
" \"\"\"\n",
|
|
" delta = lm - xEst[0:2]\n",
|
|
" q = (delta.T @ delta)[0, 0]\n",
|
|
" zangle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]\n",
|
|
" zp = np.array([[math.sqrt(q), pi_2_pi(zangle)]])\n",
|
|
" # zp is the expected measurement based on xEst and the expected landmark position\n",
|
|
" \n",
|
|
" y = (z - zp).T # y = innovation\n",
|
|
" y[1] = pi_2_pi(y[1])\n",
|
|
" \n",
|
|
" H = jacobH(q, delta, xEst, LMid + 1)\n",
|
|
" S = H @ PEst @ H.T + Cx[0:2, 0:2]\n",
|
|
"\n",
|
|
" return y, S, H\n",
|
|
"\n",
|
|
"def jacobH(q, delta, x, i):\n",
|
|
" \"\"\"\n",
|
|
" Calculates the jacobian of the measurement function\n",
|
|
" \n",
|
|
" :param q: the range from the system pose to the landmark\n",
|
|
" :param delta: the difference between a landmark position and the estimated system position\n",
|
|
" :param x: the state, including the estimated system position\n",
|
|
" :param i: landmark id + 1\n",
|
|
" :returns: the jacobian H\n",
|
|
" \"\"\"\n",
|
|
" sq = math.sqrt(q)\n",
|
|
" G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],\n",
|
|
" [delta[1, 0], - delta[0, 0], - 1.0, - delta[1, 0], delta[0, 0]]])\n",
|
|
"\n",
|
|
" G = G / q\n",
|
|
" nLM = calc_n_LM(x)\n",
|
|
" F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))\n",
|
|
" F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),\n",
|
|
" np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))\n",
|
|
"\n",
|
|
" F = np.vstack((F1, F2))\n",
|
|
"\n",
|
|
" H = G @ F\n",
|
|
"\n",
|
|
" return H"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Observation Step\n",
|
|
"The observation step described here is outside the main EKF SLAM process and is primarily used as a method of\n",
|
|
"driving the simulation. The observations funciton is in charge of calcualting how the poses of the robots change \n",
|
|
"and accumulate error over time, and the theoretical measuremnts that are expected as a result of each \n",
|
|
"measurement. \n",
|
|
"\n",
|
|
"Observations are based on the TRUE position of the robot. Error in dead reckoning and control functions are \n",
|
|
"passed along here as well. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def observation(xTrue, xd, u, RFID):\n",
|
|
" \"\"\"\n",
|
|
" :param xTrue: the true pose of the system\n",
|
|
" :param xd: the current noisy estimate of the system\n",
|
|
" :param u: the current control input\n",
|
|
" :param RFID: the true position of the landmarks\n",
|
|
" \n",
|
|
" :returns: Computes the true position, observations, dead reckoning (noisy) position, \n",
|
|
" and noisy control function\n",
|
|
" \"\"\"\n",
|
|
" xTrue = motion_model(xTrue, u)\n",
|
|
"\n",
|
|
" # add noise to gps x-y\n",
|
|
" z = np.zeros((0, 3))\n",
|
|
"\n",
|
|
" for i in range(len(RFID[:, 0])): # Test all beacons, only add the ones we can see (within MAX_RANGE)\n",
|
|
"\n",
|
|
" dx = RFID[i, 0] - xTrue[0, 0]\n",
|
|
" dy = RFID[i, 1] - xTrue[1, 0]\n",
|
|
" d = math.sqrt(dx**2 + dy**2)\n",
|
|
" angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])\n",
|
|
" if d <= MAX_RANGE:\n",
|
|
" dn = d + np.random.randn() * Qsim[0, 0] # add noise\n",
|
|
" anglen = angle + np.random.randn() * Qsim[1, 1] # add noise\n",
|
|
" zi = np.array([dn, anglen, i])\n",
|
|
" z = np.vstack((z, zi))\n",
|
|
"\n",
|
|
" # add noise to input\n",
|
|
" ud = np.array([[\n",
|
|
" u[0, 0] + np.random.randn() * Rsim[0, 0],\n",
|
|
" u[1, 0] + np.random.randn() * Rsim[1, 1]]]).T\n",
|
|
"\n",
|
|
" xd = motion_model(xd, ud)\n",
|
|
" return xTrue, z, xd, ud"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def calc_n_LM(x):\n",
|
|
" \"\"\"\n",
|
|
" Calculates the number of landmarks currently tracked in the state\n",
|
|
" :param x: the state\n",
|
|
" :returns: the number of landmarks n\n",
|
|
" \"\"\"\n",
|
|
" n = int((len(x) - STATE_SIZE) / LM_SIZE)\n",
|
|
" return n\n",
|
|
"\n",
|
|
"\n",
|
|
"def jacob_motion(x, u):\n",
|
|
" \"\"\"\n",
|
|
" Calculates the jacobian of motion model. \n",
|
|
" \n",
|
|
" :param x: The state, including the estimated position of the system\n",
|
|
" :param u: The control function\n",
|
|
" :returns: G: Jacobian\n",
|
|
" Fx: STATE_SIZE x (STATE_SIZE + 2 * num_landmarks) matrix where the left side is an identity matrix\n",
|
|
" \"\"\"\n",
|
|
" \n",
|
|
" # [eye(3) [0 x y; 0 x y; 0 x y]]\n",
|
|
" Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(\n",
|
|
" (STATE_SIZE, LM_SIZE * calc_n_LM(x)))))\n",
|
|
"\n",
|
|
" jF = np.array([[0.0, 0.0, -DT * u[0] * math.sin(x[2, 0])],\n",
|
|
" [0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],\n",
|
|
" [0.0, 0.0, 0.0]])\n",
|
|
"\n",
|
|
" G = np.eye(STATE_SIZE) + Fx.T * jF * Fx\n",
|
|
" if calc_n_LM(x) > 0:\n",
|
|
" print(Fx.shape)\n",
|
|
" return G, Fx,\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def calc_LM_Pos(x, z):\n",
|
|
" \"\"\"\n",
|
|
" Calcualtes the pose in the world coordinate frame of a landmark at the given measurement. \n",
|
|
"\n",
|
|
" :param x: [x; y; theta]\n",
|
|
" :param z: [range; bearing]\n",
|
|
" :returns: [x; y] for given measurement\n",
|
|
" \"\"\"\n",
|
|
" zp = np.zeros((2, 1))\n",
|
|
"\n",
|
|
" zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])\n",
|
|
" zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])\n",
|
|
" #zp[0, 0] = x[0, 0] + z[0, 0] * math.cos(x[2, 0] + z[0, 1])\n",
|
|
" #zp[1, 0] = x[1, 0] + z[0, 0] * math.sin(x[2, 0] + z[0, 1])\n",
|
|
"\n",
|
|
" return zp\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_LM_Pos_from_state(x, ind):\n",
|
|
" \"\"\"\n",
|
|
" Returns the position of a given landmark\n",
|
|
" \n",
|
|
" :param x: The state containing all landmark positions\n",
|
|
" :param ind: landmark id\n",
|
|
" :returns: The position of the landmark\n",
|
|
" \"\"\"\n",
|
|
" lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]\n",
|
|
"\n",
|
|
" return lm\n",
|
|
"\n",
|
|
"\n",
|
|
"def search_correspond_LM_ID(xAug, PAug, zi):\n",
|
|
" \"\"\"\n",
|
|
" Landmark association with Mahalanobis distance.\n",
|
|
" \n",
|
|
" If this landmark is at least M_DIST_TH units away from all known landmarks, \n",
|
|
" it is a NEW landmark.\n",
|
|
" \n",
|
|
" :param xAug: The estimated state\n",
|
|
" :param PAug: The estimated covariance\n",
|
|
" :param zi: the read measurements of specific landmark\n",
|
|
" :returns: landmark id\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" nLM = calc_n_LM(xAug)\n",
|
|
"\n",
|
|
" mdist = []\n",
|
|
"\n",
|
|
" for i in range(nLM):\n",
|
|
" lm = get_LM_Pos_from_state(xAug, i)\n",
|
|
" y, S, H = calc_innovation(lm, xAug, PAug, zi, i)\n",
|
|
" mdist.append(y.T @ np.linalg.inv(S) @ y)\n",
|
|
"\n",
|
|
" mdist.append(M_DIST_TH) # new landmark\n",
|
|
"\n",
|
|
" minid = mdist.index(min(mdist))\n",
|
|
"\n",
|
|
" return minid\n",
|
|
"\n",
|
|
"def calc_input():\n",
|
|
" v = 1.0 # [m/s]\n",
|
|
" yawrate = 0.1 # [rad/s]\n",
|
|
" u = np.array([[v, yawrate]]).T\n",
|
|
" return u\n",
|
|
"\n",
|
|
"def pi_2_pi(angle):\n",
|
|
" return (angle + math.pi) % (2 * math.pi) - math.pi"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def main():\n",
|
|
" print(\" start!!\")\n",
|
|
"\n",
|
|
" time = 0.0\n",
|
|
"\n",
|
|
" # RFID positions [x, y]\n",
|
|
" RFID = np.array([[10.0, -2.0],\n",
|
|
" [15.0, 10.0],\n",
|
|
" [3.0, 15.0],\n",
|
|
" [-5.0, 20.0]])\n",
|
|
"\n",
|
|
" # State Vector [x y yaw v]'\n",
|
|
" xEst = np.zeros((STATE_SIZE, 1))\n",
|
|
" xTrue = np.zeros((STATE_SIZE, 1))\n",
|
|
" PEst = np.eye(STATE_SIZE)\n",
|
|
"\n",
|
|
" xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning\n",
|
|
"\n",
|
|
" # history\n",
|
|
" hxEst = xEst\n",
|
|
" hxTrue = xTrue\n",
|
|
" hxDR = xTrue\n",
|
|
"\n",
|
|
" while SIM_TIME >= time:\n",
|
|
" time += DT\n",
|
|
" u = calc_input()\n",
|
|
"\n",
|
|
" xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)\n",
|
|
"\n",
|
|
" xEst, PEst = ekf_slam(xEst, PEst, ud, z)\n",
|
|
"\n",
|
|
" x_state = xEst[0:STATE_SIZE]\n",
|
|
"\n",
|
|
" # store data history\n",
|
|
" hxEst = np.hstack((hxEst, x_state))\n",
|
|
" hxDR = np.hstack((hxDR, xDR))\n",
|
|
" hxTrue = np.hstack((hxTrue, xTrue))\n",
|
|
"\n",
|
|
" if show_animation: # pragma: no cover\n",
|
|
" plt.cla()\n",
|
|
"\n",
|
|
" plt.plot(RFID[:, 0], RFID[:, 1], \"*k\")\n",
|
|
" plt.plot(xEst[0], xEst[1], \".r\")\n",
|
|
"\n",
|
|
" # plot landmark\n",
|
|
" for i in range(calc_n_LM(xEst)):\n",
|
|
" plt.plot(xEst[STATE_SIZE + i * 2],\n",
|
|
" xEst[STATE_SIZE + i * 2 + 1], \"xg\")\n",
|
|
"\n",
|
|
" plt.plot(hxTrue[0, :],\n",
|
|
" hxTrue[1, :], \"-b\")\n",
|
|
" plt.plot(hxDR[0, :],\n",
|
|
" hxDR[1, :], \"-k\")\n",
|
|
" plt.plot(hxEst[0, :],\n",
|
|
" hxEst[1, :], \"-r\")\n",
|
|
" plt.axis(\"equal\")\n",
|
|
" plt.grid(True)\n",
|
|
" plt.pause(0.001)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" start!!\n",
|
|
"New LM\n",
|
|
"New LM\n",
|
|
"New LM\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"636\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"New LM\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%matplotlib notebook\n",
|
|
"%matplotlib notebook\n",
|
|
"main()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|